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1 Introduction

Recent regulatory changes due to Reg NMS and MiFID along with the
automation of algorithmic trading shifted the focus of researchers and practi-
tioners towards liquidity and market microstructure problems. New strands
of the mathematical finance literature now focus on new topics such as or-
der execution, market making, systemic risk, and counterparty risk from a
microstructure perspective.

Electronic markets are mainly organized around Limit Order Books (LOBs)
and Over-The-Counter (OTC) markets to exchange securities between mar-
ket participants. This course introduces the literature on optimal trading in
high frequency markets with a focus on optimal order execution in LOBs and
optimal market making in OTC markets. Optimal trading problems share a
common structure that will be followed throughout this course. In each sec-
tion, we (i) identify a decision problem motivated by practical situations faced
by market operators, we (ii) propose a parsimonious model which summarises
the environment in key variables that must be considered, we (iii) frame the
decision problem as an optimisation problem which can be addressed using
classical mathematical tools, and finally we (iv) obtain a solution (often in
closed-form) which we study through simulations and discussions.

Next, we describe the mechanisms of LOBs and OTC markets. LOBs al-
low traders to submit different types of orders that indicate the price, the
volume, and the intention to buy or sell a security, and they rely on financial
institutions and trusted third-parties that facilitate trading by collecting or-
ders and matching buyers and sellers. OTC markets are based on a network
of financial institutions and market makers that constantly stream quotes at
which they are ready to buy and sell securities.

1.1 Limit order books

Limit order books concentrate most of the trading activity in the stock
market. Here, we recall the main mechanisms behind LOBs which motivate
many of our modelling assumptions in the following sections. The LOB allows
to match buyers with sellers. Both can send two types of orders; limit orders
(LOs) and market orders (MOs). Here, we focus on price-time-priority LOBs,
which are the most popular.
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Figure 1: Changes in the LOB after a buy / sell LO.

Post buy
limit order

Post sell limit
order

An LO is composed of a price level, a volume, and an indicator to buy or to
sell the asset. Once an LO is posted by a trader, it rests (or sits) in the LOB
until it is matched against an MO of the opposite side, or it is cancelled by
the agent that posted it. If the LO is a buy LO, then it sits on the bid side of
the LOB, and if it is a sell LO, then it sits on the ask side; see Figure 1 which
represents an LOB before and after a buy or sell LO is posted. Limit orders
are called passive orders because they do not consume liquidity immediately.
The cancellation or filling of an LO that is resting in the LOB can be either
full (for the entire posted quantity) or partial; see Figure 2.

Traders can post multiple LOs at different price levels (see Figure 3). When
two LOs are posted on the same side of the book and at the same price level,
then the order of execution in an LOB with price-time priority depends on
their position in the queue. Time priority in LOBs means that the queues are
First-In-First-Out (FIFO) queues. More precisely, when two LOs are sitting
on the same side of the LOB at the same price level, then the LO that was
posted first is executed before. Price priority in LOBs means that if two buy
(sell) LOs are sitting on the bid (ask) side of the LOB at different price levels,
then the LO with the highest (lowest) price is executed first.
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Figure 3: Changes in the LOB after a buy LO at the second best level.
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The state of the LOB at a specific time is described by the size of the LO
queues and their price levels. There are two price levels which correspond to
the highest price across buy LOs and the lowest price across sell LOs. These
are referred to as the best bid and the best ask, respectively. The average of
the best bid and best ask is called the midprice; See Figure 1.

An MO consists of a volume and an indicator to buy and sell the security.
When an MO is submitted by a trader, it is matched against opposite LOs
that are resting in the LOB; see Figure 4 which shows the state of the LOB
before and after a buy MO has been submitted.
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1.2 Market impact

The effect that MOs have on prices can be described in several ways. The
literature on market impact generally splits the impact of MOs on prices
into a temporary and a permanent impact. However, these two compo-
nents of market impact are not completely dissociated, and more realistic
interpretations can be studied and modelled; see Section 8 for an example.

Temporary market impact – Execution costs. When an MO is sub-
mitted, it is matched against resting LOs on the opposite side of the book.
If the size of the MO is larger than the size of the queue at the best available
price, then the first queue is depleted, and the MO is matched with LOs rest-
ing on the second best available price. This continues until the entire MO is
filled. Figure 5 depicts how large MOs walk the book further when compared
to smaller MOs.

The volume of an MO and the volumes and prices of resting LOs determine
the overall transaction price of the MO. We refer to the difference between
the midprice1 and the execution price (per share) obtained by the agent as
the execution costs, or the instantaneous market impact, or the temporary
market impact.

1One may choose another reference price like the best ask or best bid.
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Figure 5: Impact of small and large MOs on the limit order book.
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Provided with a snapshot of the LOB, i.e., the state of the LOB at some
given time, traders can compute the execution price per share for various
volumes of MOs as they walk the book. Thus, they can obtain an estimate
of the execution costs as a function of the volume of an MO. Figure 6 shows
the execution costs per share as a function of the volume at different times
throughout a trading day for the share MSFT quoted on NYSE.

First, note that the minimum execution cost for small volumes is $ 0.005
which corresponds to half the tick size. The tick size corresponds to the
smallest price increment between two successive price levels in the LOB.
Thus, the smallest bid-ask spread, i.e., the difference between the best bid
and the best ask, is equal to 1 tick, which corresponds to $ 0.01 for MSFT. In
many cases throughout the trading day we consider in Figure 6, the bid-ask
spread is larger than 1 tick. Thus, even for MOs with small sizes that do not
deplete the best opposite queue, the trader must cross the spread and incur
execution costs that correspond to half the bid-ask spread.

Also, note that the difference between the average execution price is ap-
proximately a linear function of the volume. Denote the midprice by S and
the volume of a an MO by v. We can approximate the execution price per
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Figure 6: Execution costs defined as a function of trading volume for multiple
snapshots of the LOB of MSFT quoted on Nasdaq. The execution costs are
defined as the difference between the execution price per share for a given
volume of share, and the midprice.

share with the linear form S+η v.We will make this modelling assumption in
many of the models presented in the following sections. Part of the literature
prefers to approximate execution costs with a concave power law, and we
study this assumption in Section 6.

Permanent market impact. Permanent price impact refers to the rela-
tionship between the volume of an MO and the midprice at future times after
the execution. Large MOs leave a lasting and long-term effect on the mid-
price. Large buy MOs move the price upward and large sell MOs move the
price downward; see Figure 7. An interpretation of this modelling assumption
is that market participants are trading based on information on the funda-
mental value of the firm, so their trading activity should reflect permanent
change in the value of the share. The seminal work in Gatheral (2010) shows
with simple arguments that a model with permanent impact that is not linear
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in the size of the MO leads to dynamic arbitrage, i.e., leads to strategies with
zero risk and positive profits, which is an undesirable feature in an optimal
trading model because these strategies do not exist in practice; see Section
4.4 for more details.
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Figure 7: In the first two panels, an MO walks the book so the next midprice
exhibits the temporary price impact. Immediately after the MO, market
participants replenish the LOB. The difference between the midprice in the
last panel and that of the first panel is the permanent impact.

buy MO walks
the book

1.3 Over-the-counter markets

There are two types of market participants in any trading venue; liquidity
takers and liquidity providers. Liquidity takers are traders that need to buy
or sell an asset and look for a counterparty to match their trade. Liquidity
providers or market makers are counterparty to both buyers and sellers and
profit from roundtrip trades (in LOBs, they earn the spread).

Most electronic exchanges clear the demand and supply of liquidity in
LOBs, which are essentially trading venues for stocks. Alternatively, OTC
markets are off-exchange “quote-driven” (or dealer-driven) markets that are
based on a network of market makers that set prices at which liquidity takers
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can trade. These markets are the main exchanges for FX and Corporate
Bonds securities.

OTC market makers faces a complex problem. They provide bid and ask
quotes for various assets that exhibit complex joint dynamics without seeing
the full depth of price and clients. Consequently, it is key to properly account
for risks at the portfolio level. However, a large proportion of multi-asset
market making models in the literature only consider correlated Brownian
dynamics. Additionally, multi-asset market making is challenging due to high
dimensionality and the resulting numerical challenges to obtain the optimal
quotes.

1.4 Optimal execution

Market operators with large orders regularly come to the market for dif-
ferent reasons, e.g., financial firms that shifted from individual trading to
centralised execution in dealing desks, banks that manage their liquidity risk
through central risk books (CRB) at the firm level, agency brokers who act
on behalf of pension funds, hedge funds, mutual funds, or sovereign funds,
etc.

When the orders to be executed represent a significant portion of the overall
traded volume, market operators cannot place all the desired quantity in a
single order because either the available liquidity is insufficient, or the trade
would adversely impact the price and be excessively costly (e.g., by walking
the book). The market operator (agent) must slice the parent order into
smaller (child) orders which are executed over a given period of time.

Slow execution of child orders exposes the agent to adverse price fluctua-
tions, i.e., the price might increase when the agent needs to buy or the price
might decrease when agent needs to sell. However, fast execution of child
orders exposes the agent to higher execution costs due to crossing the spread
and walking the book. It also impacts the price adversely due to the agent’s
own trading activity (permanent impact). A balance must be struck between
trading fast to minimise market risk and trading slowly to minimise trading
costs. This classical problem gave rise to an extensive literature which focuses
on the problem of optimal execution and scheduling of large orders.

The agent must formulate a model to decide how to optimally execute a
large order. The models presented in this course, much like those in the liter-
ature, are solved for different modelling assumptions on the agent’s aversion
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to risk, their aversion to holding inventory, the execution costs incurred when
sending orders, the permanent impact of their trading activity, the type of
orders they use, the dynamics of the midprice, etc.

1.5 Mathematical tools

This section provides a very brief overview of the mathematical tools
needed in several of the algorithmic trading problems studied in the following
sections.

1.5.1 Convex analysis

Sections 3 and 4 rely on results of convex analysis and convex duality. In
this section, we recall the main results that are used. The proofs and further
analysis can be found in the classical monographs on convex analysis; see
e.g., Rockafellar (1997).

First, we introduce the central tool of Legendre-Fenchel transform in con-
vex analysis.

Definition 1. The Legendre-Fenchel transform of a convex function f is the
function f ∗ defined by

f̃ : p ∈ Rd 7→ sup
x∈Rd

p · x− f(x).

The Legendre-Fenchel transform f̃ is a mapping from the graph of a func-
tion to the set of its tangents. f̃ is well defined when f is asymptotically
super-linear2. It is also a convex function, and the Legendre-Fenchel of f̃ is
f . Finally, when f is strictly convex, then f̃ is continuously differentiable.

We focus on a specific problem that arises when addressing optimal trad-
ing problems with convex trading costs, called Bolza problems; see Guéant
(2016) for numerous optimal trading problems solved using this framework.
A particular type of Bolza problems focuses on finding the minimisers of the

2A convex function f : Rd 7→ R is asymptotically super-linear when

lim
|x|→∞

f(x)

|x|
= ∞.
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function J :

J : x ∈ W 1,1((0, T ),Rd) 7→
∫ T

0

(f(x(t)) + g(x′(t))) dt, (1)

over the set

C =
{
x ∈ W 1,1((0, T ),Rd), x(0) = a, x(T ) = b

}
,

where W 1,1 (U) is the set of real-valued absolutely continuous functions on
the open set U , and d ≥ 1 is an integer.

We assume that f(·) and g(·) are classical convex functions that are measur-
able and bounded from below. The problem (1) is called the primal problem
and we introduce the dual optimisation problem

I : p ∈ W 1,1((0, T ),Rd) 7→
∫ T

0

(
f̃t(p

′(t)) + g̃t(p(t))
)
dt+ a · p(0)− b · p(T ),

over the set of absolutely continuous functions.

Theorem 1. If f and g are continuous convex functions and they are asymp-
totically super-linear, then there exists a minimiser x∗ of J and a minimiser
p∗ of I.

If f is differentiable, and g is strictly convex, then the minimiser can be
characterised by the following Hamiltonian system of equations:

p∗
′
(t) = f

′
(x∗(t)),

x∗
′
(t) = g̃

′
(p∗(t)),

x∗(0) = a,

x∗(T ) = b.

Discrete time. In discrete time, we consider the functional J : RdN+d 7→ R
given by

J(x0, . . . , xN) =
N−1∑
n=1

f (xn) +
N−1∑
n=0

g (xn+1 − xn) ,

where f and g are convex functions. Our goal is to find the minimisers of J
over

C =
{
(x0, . . . , xN) ∈ Rd(N+1), x0 = a, xN = b

}
,

14



where a and b are fixed. The dual problem is

I(p0, . . . , pN−1) =
N−1∑
n=1

f̃n (pn − pn−1) +
N−1∑
n=0

g̃n (pn) + a · p0 − b · pN−1.

The discrete-time counterpart of Theorem 1 is:

Theorem 2. If x∗ = (x∗0, . . . , x
∗
N) minimises J and p∗ = (p∗0, . . . , p

∗
N−1) min-

imises I, then they can be characterised by the following Hamiltonian system
of equations: {

p∗n − p∗n−1 = f
′
(x∗n) ∀n ∈ {1, . . . , N − 1} ,

x∗n+1 − x∗n = g̃
′
(p∗n) ∀n ∈ {0, . . . , N − 1} .

1.5.2 Stochastic optimal control

This section recalls the dynamic programming principle for jump-diffusion
processes; see the monograph Pham (2009) for more details on stochastic
optimal control and the book Cartea et al. (2015) for various optimal trading
models solved using the tools of stochastic optimal control.

In dynamic optimisation problems, an agent seeks to maximise a reward
over some time window [0, T ]. The agent takes actions u that affect the
dynamics of some underlying system Xu; the superscript indicates that X
is affected (controlled) by u. Often, the actions of the agent incur costs (or
rewards) over the time window, which can also depend on the time and the
state of the system, so they must be accounted for. At each time t, the
cumulative past actions of the agent affect the future dynamics of the system
and future potential costs.

We consider a filtered probability space
(
Ω,F ,P;F = (Ft)t∈[0,T ]

)
satisfying

the usual conditions and which supports all the processes that we introduce,
where T > 0 is a fixed time horizon.

Consider an agent who is faced with a control problem of a system whose
dynamics contain a diffusive and a jump component. Let (Nu

t )t∈[0,T ] denote

a p−dimensional counting process with controlled intensity (λut )t∈[0,T ] where

λut = λ (t,Xu
t ,ut) and (ut)t∈[0,T ] is an m−dimensional control process.3 Also,

let (Wt)t∈[0,T ] denote an m−dimensional standard Brownian motion.

3Nu is called a doubly stochastic Poisson process because its intensity is itself stochastic, and in our case
controlled. Recall that Nu

t −
∫ t

0
λu
s ds is a martingale.
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Let (Xu
t )t∈[0,T ] denote a controlled m−dimensional system with dynamics

dXu
t = µ (t,Xu

t ,ut) dt+V (t,Xu
t ,ut) dWt+γ (t,X

u
t ,ut) dN

u
t , Xu

0 = X0, (2)

where the m−dimensional vector of drifts µ, the m×m variance matrix V,
and the m× p−dimensional jump matrix γ are Lipschitz continuous and X0

is known.

The agent has a performance criterion they wish to maximise which takes
the form

E

[
G(Xu

T ) +

∫ T

0

F (s,Xu
s ,us) ds

]
. (3)

where G : Rm 7→ R is the terminal reward function and F : [0, T ]×Rm×Rp 7→
R is the running reward function. The functions G and F are assumed to be
uniformly bounded.

The agent seeks to maximise the performance criterion (3), so we define
their value function as:

H(X0) = sup
u∈A

E

[
G(Xu

T ) +

∫ T

0

F (s,Xu
s ,us) ds

]
, (4)

where A is the admissible set of strategies that the agent may use:

A =

{
(us)s∈[0,T ], Rm-valued, F-predictable, such that (5)

(Xu
s )s∈[0,T ] admits a strong solution

}
.

The predictability assumption in (5) is necessary in financial decision prob-
lems because it ensures that the agent can only use strategies that do not use
future information. Often in the following sections, we require the admissi-
ble set to include additional constraints to ensure that the problem is well
defined and that a solution exists.

Instead of optimising H in (4), it is more convenient to consider a time-
indexed succession of optimisation problems that explicitly take into account
the feedback effect between the actions of the agent and their impact on the
future dynamics and costs. More precisely, we embed the problem (4) into a
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class of problems indexed by time t:

H(t,x) = sup
u∈At

E

[
G(Xx,u

T ) +

∫ T

t

F (s,Xx,u
s ,us) ds

]
, (6)

where the process (Xx,u
s )s∈[t,T ] follows the same dynamics as in (2) but starts

with initial value Xx,u
t = x, and where we define for all t ∈ [0, T ]:

At =

{
(us)s∈[t,T ], Rm-valued, F-predictable, such that

(Xu
s )s∈[t,T ] admits a strong solution

}
,

and we set A = A0, so H(0,x) = H(x).

Often in this course, we will drop the notation Xx,u, and write (6) as

H(t,x) = sup
u∈At

Et,x

[
G(Xu

T ) +

∫ T

t

F (s,Xu
s ,us) ds

]
,

where Et,x represents the expectation conditional on Xu
t = x.

The following classical result (see Pham (2009)) shows that the value func-
tion satisfies the Dynamic Programming Principle (DPP).

Theorem 1. The value function (6) satisfies the DPP

H(t,x) = sup
u∈A

E

[
H(T,Xx,u

T ) +

∫ T

t

F (s,Xx,u
s ,us) ds

]
,

for all t ∈ [0, T ] and x ∈ Rm.

The DPP connects the value function to its future expected value, regu-
larised by the expected reward or penalty F. In its infinitesimal version, the
DPP gives the Dynamic Programming Equation (DPE), or the Hamilton-
Jacobi-Bellman (HJB) equation

∂tH(t,x) + supu∈A(Lu
t H(t,x) + F (t,x,u)) = 0

subject to the terminal condition H(T,x) = G(x),

where Lu
t is the infinitesimal generator of the process Xx,u

t .
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Sketch of the proof The dynamic programming principle gives

H(t,x) = sup
u

{
E

[
H(t+ h,Xu

t+h) +

∫ t+h

t

F (s,Xu
s ,us) ds

∣∣∣∣X t = x

]}
,

(7)
for any h ∈ (0, T − t).

By Itô’s formula we have

H (t+ h,Xu
t+h)−H(t,x)

=

∫ t+h

t

(∂t + Lu
t ) [H](s,Xu

s )ds+

∫ t+h

t

σ(s,Xu
s ,us)∇xH(s,Xu

s) dWs ,

where Lu
t is the infinitesimal generator of Xu.

Replace H (t+ h,Xu
t+h) in (7), divide by h on both sides of (7), and send

h to 0, to obtain the HJB

∂tH(t,x) + sup
u
(Lu

tH(t,x) + F (t,x,u)) = 0.

For the diffusion-jump process in (2), the infinitesimal generator acts on
functions H as follows:

Lu
t H(t,x) = µ(t,x,u) · ∇xH(t,x) + 1

2Tr
(
Σ(t,x,u)D2

xxH(t,x)
)

+
∑p

j=1 λj(t,x,u)
[
H(t,x+ γ :,j(t,x,u))−H(t,x)

]
,

(8)

whereΣ(t,x,u) = V (t,x,u)V (t,x,u)⊺ is the covariance matrix, D2
xxH(t,x)

is the Hessian matrix of H, and γ(t,x,u):,j is the jth column of the m × p
matrix γ(t,x,u).

The first term in (8) represents the change in the value function due to the
drift of X, the second term represents the diffusion volatility, and the third
term corresponds to the arrival of a jump in each component of N. When a
jump of the jth component of N occurs, the components of the system X
only jump according to the jth column of γ(t,x,u).

Solving for the supremum term in the HJB provides the optimal control
in feedback form, i.e., as a function of the value function. One usually solves
the HJB equation, which is a nonlinear PDE. The solution the the PDE is
only a candidate solution and one needs to prove that it is in fact the solution
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to the original control problem through a verification argument; see Pham
(2009). When a classical solution to the HJB equation exists, i.e., it is C1

in time and C2 in x, and if the control is admissible, i.e., it is in A, then by
standard results, the solution to the HJB is indeed the value function we seek
and the resulting control is an optimal Markov control. Finally, the results
and discussions above hold for any terminal stopping time τ ≤ T.
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2 Optimal routing

We start this course with a simple problem that illustrates the methodology
to adopt when addressing an optimal trading problem. More precisely, we
(i) identify a decision problem, we (ii) propose a parsimonious model of the
environment through variables that describe the key quantities to consider,
we (iii) frame the decision problem as an optimisation problem that can be
solved with classical mathematical tools, and finally we (iv) obtain a solution
that we can study and implement in practice.

2.1 Optimal routing of agressive orders

Identifying the decision problem. Liquidity in trading venues is limited.
Often, operators need to split a large order over N available trading venues
to obtain better execution prices and to reduce the costs of their trading
activity.

Here, we study the problem of optimal routing of “marketable” orders in
multiple trading venues. A marketable order is a buy (resp. sell) order at a
price higher than the best ask (resp. lower than the best bid). A buy (sell)
marketable order is defined by two variables Q⋆ and P ⋆. Q⋆ is the quantity of
the order and P ⋆ is the maximum (minimum) price that the trader is willing
to accept.

Modelling framework. Let (Q⋆, P ⋆) be a marketable buy order; the anal-
ysis for sell orders is identical. Let Qn(p) be the visible quantity that is
available at price p in the n−th trading venue when n ∈ {1, . . . , N}.

Optimisation problem. The agent splits the parent order (Q⋆, P ⋆) into N
child orders (Qn(pn), pn) to send to the N trading venues. The agent wishes
to choose (p1, · · · , pn) to minimise the overall execution price

N∑
n=1

pn ·Qn(pn),

and ensure that the parent order is fully executed, i.e., we require that

Q⋆ =
N∑
n=1

Qn(pn).
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Recall that P ⋆ is the maximum price that the agent is willing to pay, so we
need the additional constraint that P ⋆ ≥ pn for all n ∈ {1, · · · , N}.

Solution. The above problem is a classical constrained optimisation prob-
lem. We look for the stationary points of the Lagrangian function and we
write

Qn(pn) + pnQ
′

n(pn) = λQ
′

n(pn), for n ∈ {1, · · · , N},
where λ is the Lagrange multiplier.

Next, we assume the linear form

Qn(p) = qn + cn · p.

Thus we obtain

(qn + cn · p⋆n) + p⋆n cn = λ cn =⇒ p⋆n =
λ

2
− qn

2 cn
.

Substitute λ in the constraint Q⋆ =
∑N

n=1Qn(pn) to obtain

Q⋆ =
N∑
n=1

{qn + cn · p⋆n} =
N∑
n=1

qn/2 + c λ/2, c =
∑
n

cn.

Finally, the optimal prices to target in each trading venue are given by

p⋆n =
Q⋆

c
− qn

2 cn

(
1 +

cn
qn

· q
c

)
, c =

1

N

∑
n

c, q =
1

N

∑
n

q

The problem above is simple, yet it contains all the ingredients of optimal
trading. In practice, agents take into account more practical issues of financial
environments such as latency in high frequency markets, cancellations in limit
order books (randomness of Qn(p)), time periods throughout which they
spread their trading activity, hidden and Iceberg orders, etc. Each issue can
be modelled with additional variables and assumptions and complicates the
model and the solution. For example, the next section consider the optimal
routing of a large limit order instead of a marketable order.
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2.2 Optimal routing of limit orders

Identifying the decision problem. Crossing the spread is the first source
of execution costs. Thus, agents mostly trade with limit orders. However,
there is structural uncertainty when using limit orders because of price and
time priority; waiting on a bad queue generates opportunity costs. Here,
we consider the problem of an agent that can trade in N different LOBs and
wishes to split a large buy limit order.

Modelling framework. Let Qn denote the size of the best bid queue in
the n−th LOB. If the agent posts a buy limit order at the best bid price,
then they must wait for the Qn previous LOs to be filled before their LO is
filled. The agent assumes that the best bid queue is consumed according to a
Poisson P n

t with intensity λn. This intensity can be estimated using historical
data.

Optimisation problem. The objective of the agent is to split the parent
order into N child LOs with quantities (q1, · · · , qN). The agent wishes to
minimize, on average, the time t⋆ that they need to execute the quantity
Q⋆ =

∑
n qn.

Solution. In each trading venue n ∈ {1, . . . , N}, after the LO of size qn is
posted, the size of the best bid queue is Qn + qn. We denote by tn the time
needed for the queue to be totally consumed. We write∫ tn

0

dP n
t = qn +Qn =⇒ E [P n

tn] = tn λn = qn +Qn.

The agent seeks to minimise the maximum of {t1, . . . , tN}, so we necessarily
have that t⋆ = tn for all n ∈ {1, · · · , N}.

In particular, we write

t⋆ = tn = Q⋆/
∑
n

λn +
∑
n

Qn

/∑
n

λn =⇒ q⋆n = ρn
Q⋆

N
+
(
ρnQ−Q

)
,

where

ρn = λn/λ, λ =
1

N

∑
n

λn, and Q =
1

N

∑
n

Qn .
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3 The Almgren-Chriss model in discrete time

Investors and market operators such as institutional traders, mutual funds,
and brokers, regularly interact in financial markets to buy or sell large amounts
of assets. If the quantity of an order represents a significant portion of the
trading volume, then executing the order in one single trade is costly and
often impossible. As a result, the optimal split of large blocks of assets (meta
orders) into smaller trades (child orders) has become a classical problem in
the quantitative finance literature and in practice.

The optimal execution literature formulates models to help agents control
their overall trading costs. The results of these models are trading schedules
that optimally balance between (i) trading slowly to minimise execution costs
(measured as the difference between a reference price and the average price
obtained for a trade) and adverse price movements (which are a consequence
of their trading activity), and (ii) trading rapidly to minimise inventory and
price risk.

The pioneer works in the optimal execution literature are Almgren and
Chriss (1999) and Almgren and Chriss (2000). The original Almgren-Chriss
model is a discrete-time model where an agent liquidates an initial inventory
by posting market orders and maximises a mean-variance objective function.
At present, almost all practitioners slice their large orders into child orders
according to optimised trading schedules.

Various extensions and models for the optimal execution of large orders
have been proposed in the last two decades; see Section 13. All these models
share a common structure; first one formulates (and motivates) a dynamic
model of the financial environment where the agent operates, second, one de-
fines the control variables of the agent (the space of decisions), and finally, the
agent solves an optimisation problem which results in an optimal behaviour
(the optimal trading strategy).

The following sections introduce the different ingredients necessary to for-
mulate the problem of optimal trading in the original Almgren-Chriss frame-
work; namely inventory, execution costs, market impact, price dynamics,
and performance criterion. The derivations are based on Almgren and Chriss
(2000) and Guéant (2016).
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3.1 Modelling framework

An agent holds Q0 units of a single stock at time t = 0. The goal of the
agent is to unwind (or liquidate) their initial inventory by time T > 0. We
divide the time window (or trading window) [0, T ] into N slices of length ∆t
and we denote the subdivisions by

t0 = 0 < · · · < tn = n∆t < · · · < tN = N ∆t = T.

Inventory. At the start of each time interval [tn, tn+1], the agent chooses
the number of shares they buy or sell over the interval. We denote by νn+1∆t
the amount of shares that the agent buys or sells over [tn, tn+1]. If νn+1 ≤ 0
then the agent sells shares, if νn+1 ≥ 0, then the agent buys shares.

Let Qn denote the number shares (or inventory) in the agent’s portfolio
at time tn. Thus, the agent’s inventory evolves as

Qn+1 = Qn + νn+1∆t, for 0 ≤ n < N. (9)

Execution costs. Let Sn denote the midprice of the stock at time tn. For
each trade of size νn+1∆t throughout [tn, tn+1], the agent pays costs like the
bid-ask spread and the cost of walking the book. Thus, the agent’s trades
are not executed at the mid-price Sn but at a less favourable price S̃n. The
difference between the midprice and the execution price is called the execution
cost, or the temporary impact, or the instantaneous impact.

In the Almgren-Chriss model, the execution costs depend on the agent’s
trade size νn∆t and on trading activity of other agents. We introduce the
deterministic market volume Vn+1, which is the volume traded by other
agents throughout [tn, tn+1]. In practice, the market volume Vn+1 is random.
However, market activity depends on the time of day. On average, it is
deterministic and has a characteristic U-shape; see Figure 8.

To model execution costs, we assume that the execution price per share
received by the agent takes the linear form

S̃n+1 = Sn + η νn+1/Vn+1.

The cost parameter η is positive so the agent buys (sells) at prices higher
(lower) than the mid-price Sn . Thus, the amount paid (received) for νn+1∆t
shares bought (sold) between tn and tn+1 is

νn+1 S̃n+1∆t = νn+1 (Sn + η νn+1/Vn+1)∆t.
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Figure 8: Distribution of trading volume throughout a trading day, measured
in portion of LOB events, averaged through trading days between October
and December 2022 for multiple shares quoted on Nasdaq. Source: Cartea
et al. (2023e).

Note that the same comments on the linear shape of the execution costs curve
as a function of trading volume in Section 1.2 can be made on the execution
costs curve as a function of participation rate νn+1/Vn+1; see Figure ??

Let Xn denote the amount of cash on the agent’s cash account at time tn
and let X0 be the initial cash of the agent. The dynamics of the agent’s cash
account are

Xn+1 = Xn − νn+1 Sn∆t− η
ν2n+1

Vn+1
∆t, for 0 ≤ n < N. (10)

Permanent impact. We assume that the agent’s trading activity has a
permanent impact on the midprice that is relative to the size νn+1∆t of their
trades. In particular, we assume that this impact is linear in the trading size
and we assume that the dynamics of the midprice are

Sn+1 = Sn + σ
√
∆t ϵn+1︸ ︷︷ ︸

market risk

+ k νn+1∆t︸ ︷︷ ︸
linear perm. impact

, for 0 ≤ n < N, (11)

where {ϵn} are independent and identically distributed (i.i.d.) N (0, 1) vari-
ables, σ > 0 is the arithmetic volatility of the midprice, and k > 0 scales the
magnitude of the linear permanent impact. Later in Section 4.4, we show
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Figure 9: Execution costs defined as a function of participation rate for mul-
tiple snapshots of the LOB of MSFT quoted on Nasdaq. The total trade
volume is approximated by the total available liquidity. The execution costs
are defined as the difference between the execution price per share for a given
volume of share, and the midprice.

that the permanent impact of the agent’s trading activity must be linear to
prevent dynamic arbitrage.

3.2 Performance criterion

In the previous section, we have modelled the dynamics of the key variables
of the problem. Now, the agent must choose a performance criterion to
optimise. Recall that the goal of the agent is to find the optimal trading
schedule {ν1, . . . , νN}, so their performance criterion defines what optimality
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means.

This section follows the steps of Almgren and Chriss (2000) (see also
Guéant (2016)). We seek a liquidation strategy v = (ν1, . . . , νn) maximis-
ing the mean-variance objective function

E[XN ]−
γ

2
V[XN ], (12)

where γ > 0 is the risk aversion parameter and it scales the magnitude of
risk aversion in the performance of the agent. The higher the value of γ, the
more the agent penalises market risk, i.e., holding the risky asset.

We focus on deterministic strategies that are admissible, i.e., they are in
the set of admissible strategies Adet:

(νn)n ∈ Adet =

{
(ν1, . . . , νN) ∈ Rn,

N−1∑
n=0

νn+1∆t = −Q0

}
.

A deterministic strategy is a strategy that only depends on model parameters
and time. Thus, it can be computed at the beginning of the execution process,
in particular, it does not depend on the evolution of the price.

3.3 Solution

To solve our problem, we first compute the terminal wealth XN of the
agent, and then compute the performance criterion (12). The following result
provides a formula for the terminal wealth of the agent and their performance
criterion.

Proposition 1. The terminal wealth of the agent is

XN =X0 +Q0 S0 −
k

2
Q2

0 + σ
√
∆t

N−1∑
n=0

Qn+1 ϵn+1

−
N−1∑
n=0

ν2n+1

(
η − k

2 Vn+1∆t

Vn+1

)
∆t ,
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So the mean and variance of the terminal wealth are
E [XN ] = X0 +Q0 S0 − k

2Q
2
0 −

∑N−1
n=0 ν

2
n+1

(
η−k

2 Vn+1 ∆t

Vn+1

)
∆t,

V [XN ] = σ2∆t
∑N−1

n=0 Q
2
n+1 .

(13)

Proof. Use the dynamics of the inventory in (9), those of the midprice in
(11), and those of the cash in (10) to write

XN =X0 −
N−1∑
n=0

(Qn+1 −Qn)Sn − η
N−1∑
n=0

ν2n+1

Vn+1
∆t

=X0 −
N−1∑
n=0

Qn+1Sn +
N−1∑
n=0

QnSn − η

N−1∑
n=0

ν2n+1

Vn+1
∆t

=X0 −
N−1∑
n=0

Qn+1

(
Sn+1 − σ

√
∆tϵn+1 − kνn+1∆t

)
+

N−1∑
n=0

QnSn − η
N−1∑
n=0

ν2n+1

Vn+1
∆t

=X0 +Q0S0 + σ
√
∆t

N−1∑
n=0

Qn+1ϵn+1

+ k

N−1∑
n=0

Qn+1νn+1∆t− η

N−1∑
n=0

ν2n+1

Vn+1
∆t.

To obtain the desired result, write the term k
∑N−1

n=0 Qn+1νn+1∆t as

k
N−1∑
n=0

Qn+1νn+1∆t = k
N−1∑
n=0

Qn+1 (Qn+1 −Qn)

= k
N−1∑
n=0

(
Qn+1 +Qn

2
+
Qn+1 −Qn

2

)
(Qn+1 −Qn)

=
k

2

N−1∑
n=0

(
Q2

n+1 −Q2
n

)
+
k

2

N−1∑
n=0

(Qn+1 −Qn)
2
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= −k
2
Q2

0 +
k

2

N−1∑
n=0

ν2n+1∆t
2.

We only consider deterministic controls νn, so the final value of the cash
process is normally distributed with mean and variance in (13).

The first term X0 +Q0 S0 in (13) is the marked-to-market (MtM) value of
the agent’s wealth at time t = 0. The second term corresponds to costs (or to
a discount term) originating from the permanent impact. This term does not
depend on the specific liquidation strategy followed by the agent, so these
costs are unavoidable. The last term corresponds to running execution costs
throughout the trading window. In contrast to permanent impact costs, the
running execution costs depend on the liquidation strategy.

To obtain an analytical solution, we simplify our model to consider a flat
market volume curve and we write Vn = V for all n.4 In that case, minimising
the mean-variance objective (12) reduces to minimising the function J over
Adet where

J : ν ∈ Rn 7→ η̃

N−1∑
n=0

ν2n+1

V
∆t+

γ

2
σ2∆t

N−1∑
n=0

Q2
n+1 ,

and

η̃ = η − k

2
V ∆t.

The above problem minimises J over the liquidation strategies ν ∈ Adet.
Observe that this problem is equivalent to minimising the functional J over
the trading curves Q ∈ Cdet where

J : q ∈ RN+1 7→ η̃
N−1∑
n=0

(Qn+1 −Qn)
2

V ∆t
+
γ

2
σ2∆t

N−1∑
n=0

Q2
n+1,

and
Cdet = {Q = (Q0, . . . , QN) , Q0 = Q0, QN = 0} .

4In many instances in algorithmic trading models, one needs simplifying assumptions to obtain analytical
and interpretable formulae.
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The optimal liquidation strategy ν⋆ ∈ Adet is given by

ν⋆ =
Q⋆

n −Q⋆
n−1

∆t
, for 0 < n ≤ N,

where Q⋆ ∈ Cdet is the optimal trading curve.

Assumption 1. We assume that η̃ > 0 =⇒ η > k
2 V ∆t.

Assumption 1 ensures that the problem is convex. It is not restrictive
because k∆t is small enough in practice and the terms in ∆t2 are generally
dropped.

The functional J is strictly convex and Cdet is convex, thus by standard
results there exists a unique minimiser to J over Cdet. Let Q⋆ be this min-
imiser. The optimal trading curve Q⋆ is uniquely characterised by the fol-
lowing Hamiltonian system (see Theorem 2):{

pn+1 = pn + γ σ2∆tQ⋆
n+1 , 0 ≤ n < N − 1 ,

Q⋆
n+1 = Q⋆

n +
V
2 η̃ ∆t pn , 0 ≤ n < N ,

with the boundary conditions Q⋆
0 = Q0 and Q

⋆
N = 0.

Thus, Q⋆ is the solution the second-order recursive equation

Q⋆
n+2 −

(
2 +

γ σ2 V

2 η̃
∆t2
)
Q⋆

n+1 +Q⋆
n = 0 ,

which admits the solution

Q⋆
n = Q0

sinh (α (T − tn))

sinh(αT )
(14)

where α uniquely solves

2 cosh (α∆t) =
γ σ2 V

2 η̃
∆t2 .

3.4 Discussion

Here, we consider an example where the midprice has an arithmetic volatil-
ity σ = 1$ · day−1/2 (approx. 32% annualized vol) and we set S0 = 100.
Assume the flat market volume is V = 4, 000, 000 shares per day, and we set
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η = 0.1$ · share−1. An agent holds an initial inventory Q0 = 200, 000 shares
to liquidate, which corresponds to 5% participation rate. Figure 10 shows the
optimal trading curve Q⋆ for multiple values of the risk aversion parameter
γ, the volatility σ, the execution costs η, and the market trading volume V.

0.0 0.2 0.4 0.6 0.8 1.0
0

50000

100000

150000

200000 = 10 4

= 5 10 5

= 10 5

0.0 0.2 0.4 0.6 0.8 1.0
0

50000

100000

150000

200000 = 1
= 3
= 5

0.0 0.2 0.4 0.6 0.8 1.0
0

50000

100000

150000

200000 = 0.05
= 0.1
= 5

0.0 0.2 0.4 0.6 0.8 1.0
0

50000

100000

150000

200000 V = 4 106

V = 8 106

V = 2 107

Figure 10: Optimal trading curves and impact of parameters.

Liquidity parameters. η (or η̃) and V are scaling factors for the execution
costs η νn+1/V paid by the trader at time tn. When execution costs are high,
the agent trades slowly. The larger the value of η, the larger the execution
costs; η is a proxy for the depth of the LOB and can be estimated with a
linear regression using snapshots of the LOB; see Figure 6. The smaller the
value of V , the larger the execution costs; the price of liquidity depends on
the participation rate vn/V. In particular, we can show that

dQ⋆

dη

/
Q0 ≥ 0 and

dQ⋆

dV

/
Q0 ≤ 0.

In practice, in order to set the value of the execution cost / temporary
market impact parameter η, one supposes that the additional cost incurred
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per share when trading a given volume νn∆t is proportional to the partici-
pation rate to the market (in practice we consider a flat volume curve that
matches the average daily volume); see the discussions in Almgren and Chriss
(2001). For example, for each p% of participation rate, one assumes a cost
corresponding to half the bid-ask spread is incurred.5 The value of p can be
obtained from historical data.

Risk parameters. The volatility σ measures price risk. The larger its
value, the faster the agent needs to liquidate their inventory to reduce the
exposure to price risk. In particular one shows that

dQ⋆

dσ

/
Q0 ≤ 0.

The risk aversion parameter γ determines the balance between maximising
wealth (or equivalently minimising execution costs) and minimising price risk.
The larger its value, the more the agent is sensitive to price risk, thus the
agent trades faster; see Figure 10. Also, one shows that

dQ⋆

dγ

/
Q0 ≤ 0.

Finally, observe that when γ is very small, the optimal trading curve is a
straight line:

lim
γ→0

Q⋆(t) = Q0 (1− t/T ) .

5The average bid-ask spread is close to the tick value when the asset is very liquid; see Figure 6.
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4 The Almgren-Chriss model in continuous
time

4.1 Modelling framework

We work on a filtered probability space
(
Ω,F ,P;F = (Ft)t∈[0,T ]

)
satisfying

the usual conditions, where T > 0. We assume this probability space to be
large enough to support all the processes introduced in this section.

Inventory. This section introduces the continuous-time counterpart of the
model of Section 3. At time t = 0, an agent holds an initial number Q0 of
shares that they wish to unwind by the terminal time T > 0. The trader’s
position over the trading window [0, T ] is modeled by the process (Qt)t∈[0,T ].
The dynamics of this process are given by

dQt = νt dt,

where (νt)t∈[0,T ] is a progressively measurable control process satisfying the
unwind constraint ∫ T

0

νt dt = −Q0.

The value νt at time t stands for the trading speed, i.e., the instantaneous
trading volume of the agent.

Execution costs. The midprice of the stock is modelled by the (controlled)
process (St)t∈[0,T ]. At time t, the agent trades a quantity νt dt of shares, and

the price obtained by the agent for each share is S̃t = St + η νt/V where V is
the (constant) trading speed of other agents. Similar to the previous section,
we consider a flat volume of trading in the market throughout the trading
day. This assumption can be relaxed; see Section 7.5. We model the cash
account of the agent by the process (Xt)t∈[0,T ] with dynamics

dXt = −νt S̃t dt = −νt (St + η νt/V ) dt.

Market impact. The agent’s trading activity permanently impacts the
price. We assume this impact is linear; Section 4.4 shows that linear impact
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is necessary to prevent dynamic arbitrage. We write the dynamics of the
midprice as

dSt = σ dWt + k νt dt,

where (Wt)t∈[0,T ] is a standard Brownian motion, σ > 0 is the arithmetic
volatility parameter, and k ≥ 0 scales the magnitude of the permanent market
impact.

4.2 Performance criterion

Similar to the previous section, the goal of the agent is to find an optimal
liquidation strategy ν ∈ A that maximises the mean-variance criterion

E[XT ]−
γ

2
V[XT ],

where γ > 0 is the risk aversion parameter.

We denote by A the set of admissible strategies (or controls) and we write6

A =

{
(νt)t∈[0,T ] ∈ H0 (R, (Ft)t) ,

∫ T

0

νt dt = −Q0,

∫ T

0

|νt| dt ∈ L∞(Ω)

}
.

For a strategy ν ∈ A, the terminal wealth of the agent writes

XT =X0 −
∫ T

0

νt St dt− η

∫ T

0

ν2t
V
dt

=X0 +Q0 S0 +

∫ T

0

k νtQt dt+ σ

∫ T

0

Qt dWt − η

∫ T

0

ν2t
V
dt,

=X0 +Q0 S0 −
k

2
Q2

0 + σ

∫ T

0

Qt dWt − η

∫ T

0

ν2t
V
dt.

4.3 Solution

To solve the problem, we first restrict the optimisation to the set of deter-
ministic trading strategies that we denote Adet. Thus, similar to the previous

6L∞(Ω) is the set of bounded processes. H0 (R, (Ft)t) is the set of real-valued progressively measurable
processes.
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section, the terminal wealth XT is normally distributed with mean and vari-
ance 

E [XT ] = X0 +Q0 S0︸ ︷︷ ︸
MtM

− k

2
Q2

0︸︷︷︸
perm. impact.

− η

∫ T

0

ν2t
V dt︸ ︷︷ ︸

execution costs

V [XT ] = σ2
∫ T

0 Q2
t dt.

Thus, the problem of maximising a mean-variance criterion in Adet reduces
to minimising the functional

η

∫ T

0

ν2t
V
dt+

γ

2
σ2
∫ T

0

Q2
t dt.

Similar to the previous section, the above problem is equivalent to minimis-
ing the functional J over the set Cdet of deterministic absolutely continuous
functions:

J (Q) =

∫ T

0

(
η
Q

′
(t)2

V
+
γ

2
σ2
∫ T

0

Q2
t

)
dt ,

with constraints Q(0) = Q0 and Q(T ) = 0.

Because the function J is strictly convex and the set of admissible trad-
ing curves is convex, the functional J admits a unique minimiser Q⋆. To
characterise this minimiser, observe that the Legendre-Fenchel transform of
the function x 7→ η x2 is p 7→ p2/4 η, so Q⋆ is the unique solution to the
Hamiltonian system (see Theorem 1):

p′ (t) = γ σ2Q⋆ (t) ,

Q⋆′ (t) = V p(t)/2 η,

Q⋆ (0) = Q0,

Q⋆ (T ) = 0.

The above system leads to the ODE

Q⋆′′(t) = V
γ σ2

2 η
Q⋆ (t) ,

with boundary conditions Q⋆(0) = Q0 and Q⋆(T ) = 0. The solution to the
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ODE is the optimal trading curve Q⋆ ∈ Cdet:

Q⋆(t) = Q0

sinh
(
(T − t)

√
γ V σ2

2 η

)
sinh

(
T
√
V γ σ2

2 η

) , (15)

which leads to the optimal liquidation strategy ν⋆ ∈ Adet:

ν⋆(t) = −Q0

√
γ V σ2

2 η

cosh
(
(T − t)

√
γ V σ2

2 η

)
sinh

(
T
√
V γ σ2

2 η

) .

Recall the optimal strategy (14) in the discrete-time Almgren-Chriss frame-
work, and notice that when ∆t → 0, the strategy is exactly that of the
continuous-time counterpart:{

Q⋆
n = Q0 sinh(α(T−tn))

sinh(αT )

2 cosh (α∆t) = γ σ2 V
2 η̃ ∆t2

Taylor expansion

−−−−−−−−−−→
∆t→0

Q
⋆
t = Q0 sinh(α(T−t))

sinh(αT )

α =
√

γ σ2 V
2 η̃ .

Similar to Section 3, we restricted the space of admissible strategies to that
of deterministic ones. A deterministic optimal strategy is interesting in prac-
tice because it can be computed before the liquidation starts, and does not
depend on the price path. For many years, market operators used execution
algorithms that pre-compute trading schedules before the start of the trading
window. In practice, execution algorithms are split into two layers: the first
is strategic and defines the optimal trading curve to implement. The second
is tactical (or sometimes speculative) and tracks the optimal trading curve
using different types of orders, different trading venues, etc; see Figure 11.

It can be shown in the case of the mean-variance performance criterion
used by Almgren and Chriss, that there exist stochastic strategies that out-
perform the best deterministic one. However, it has been shown in Schied
et al. (2010) that when the agent uses the CARA utility (Constant Absolute
Risk Aversion), then the best strategy over both stochastic and deterministic
admissible strategies is the same as the best deterministic strategy.
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Figure 11: Execution algorithms in two layers.

4.4 Market impact must be linear

The discussion of this section is out of the scope of this course, but
provides an interesting insight on the reason for the modelling assumptions
concerning the permanent impact of trading. The discussion is based on the
pioneer work in Gatheral (2010) and the work in Guéant (2016).

In our model of Section 4.1, we assume that the permanent impact of the
agent’s trading activity is linear. Here, we show that this key assumption
guarantees the absence of dynamic arbitrage which is introduced in Gatheral
(2010). A dynamic arbitrage strategy corresponds to a roundtrip strategy
that is profitable on average. More precisely, there is a dynamic arbitrage if
there exist 0 ≤ t1 < t2 ≤ T , and an admissible strategy ν such that (i) it is a

roundtrip strategy, i.e.,
∫ t2
t1
νt dt = 0, and (ii) it is profitable on average, i.e.,

E [Xt2 | Ft1] > Xt1.

Let κ(·) be a general permanent impact function and suppose there are no
execution costs so η = 0. Then the dynamics of the processes in our problem
(qt, St, Xt) are  dqt = νt dt,

dSt = σ dWt + κ (νt) dt,
dXt = −νt St dt.
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Next, we show that κ(·) must be linear for absence of dynamic arbitrage
to hold. Consider an interval [t1, t2] and the following roundtrip strategy:

vt =

{
α if t ∈ [t1, τ(α, β)]

−β if t ∈ [τ(α, β), t2] ,

where α and β have the same sign and τ(α, β) = α t1+β t2
α+β .

An agent which follows the strategy ν wealth Xt2 at time t2 given by

Xt2 = Xt1 −
∫ t2

t1

vtStdt = Xt1 +

∫ t2

t1

(qt − qt1)σdWt +

∫ t2

t1

(qt − qt1)κ (vt) dt.

The roundtrip strategy implies that qt1 = qt2 and a short calculation shows
that

E [Xt2 | Ft1] =Xt1 +

∫ t2

t1

(qt − qt1)κ (vt) dt

=Xt1 +

∫ τ(a,b)

t1

(qt − qt1)κ (vt) dt+

∫ t2

τ(a,b)

(qt − qt2)κ (vt) dt

=Xt1 +

∫ τ(a,b)

t1

α (t− t1)κ(α)dt+

∫ t2

τ(a,b)

β (t2 − t)κ(−β)dt

=Xt1 +
1

2
α

(
β

α + β

)2

(t2 − t1)
2 κ(α)

+
1

2
β

(
α

α + β

)2

(t2 − t1)
2 κ(−β)

=Xt1 +
1

2

αβ

(α + β)2
(t2 − t1)

2 (βκ(α) + ακ(−β)).

To guarantee absence of dynamic arbitrage, we require that E [Xt2 | Ft1] ≤
Xt1 for any choice of α and β. Thus, we require that

∀α, β ∈ R, α β > 0 ⇒ β κ(α) + ακ(−β) ≤ 0.

Now, replace α with −β, and β with −α above to obtain

∀α, β ∈ R, α β > 0 ⇒ ακ(−β) + β κ(α) ≥ 0.
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Therefore,
∀α, β ∈ R, α β > 0 ⇒ β κ(α) = −ακ(−β).

In particular, set α = β to find that κ(·) is an odd function on R∗. If α ̸= 0
and β = sign(α), we obtain

∀α ∈ R∗, κ(α) = −α sign(α)κ(− sign(α)) = ακ(1).

We also need to prove κ(0) = 0 and we use another specific roundtrip
strategy. Assume κ(0) ̸= 0 and consider the following roundtrip strategy:

vt =


κ(0) if t ∈

[
t1, t1 +

τ
3

]
,

0 if t ∈
[
t1 +

τ
3 , t1 +

2τ
3

]
,

−κ(0) if t ∈
[
t1 +

2τ
3 , t2

]
,

where τ = t2 − t1. Similar calculations as above show that

E
[
Xt2

∣∣Ft1

]
= Xt1 +

∫ t2

t1

(qt − qt1)κ(νt) dt

= Xt1 +

∫ t1+τ/3

t1

κ(0)(t− t1)κ(κ(0)) dt+

∫ t1+2 τ/3

t1+τ/3

τ

3
κ(0)2 dt

+

∫ t2

t1+2 τ/3

κ(0)(t2 − t)κ(−κ(0)) dt

= Xt1 + κ (0)2
(t2 − t1)

2

9
> Xt1.

Thus, we require that κ(0) = 0 to guarantee absence of dynamic arbitrage.
The conclusion is

∀α ∈ R, κ(α) = ακ(1).

Finally, if one assumes the form κ(ν) = k ν, then it is straightforward to
see that for any strategy ν satisfying the roundtrip condition we have

E[Xt2

∣∣Ft1] = Xt1 +

∫ t2

t1

k (qt − qt1) νt dt = Xt1 +
k

2
(qt2 − qt1)

2 = Xt1,

so there is no dynamic arbitrage iif the permanent impact is linear.
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5 Optimal execution in the Cartea-Jaimungal
framework

The models of Section 3 and 4 rely on a mean-variance objective and one
key constraint; a fuel constraint which stipulates that the sum of trades
executed by the agent should sum up to minus the initial inventory. This
constraint is also called a hard constraint because it stipulates that the
terminal inventory QT must be zero. When addressing trading problems in
a dynamic setup, the hard constraint leads to singular boundary condition
that makes optimal trading problems difficult to address mathematically.
Álvaro Cartea, Sebastian Jaimungal, and their co-authors proposed a frame-
work with penalisation terms that (i) relax the hard constraint, (ii) are inter-
pretable, (iii) can be estimated from market data, and (iv) most importantly
enable one to use the classical tools of stochastic optimal control. This frame-
work is now the standard approach to solve optimal trading problems of all
kinds in the mathematical finance literature. Many of the models discussed
in the course are inspired by the book Cartea et al. (2015).

The model of this section also deals with the classical problem of how an
agent can buy or sell a large amount of shares with minimum costs while also
minimising the risk of adverse price movements.

5.1 Modelling framework

Similar to Section 4, the model of this section requires to describe the
dynamics of the number of shares that the agent is holding (inventory), the
dynamics of the midprice of the asset, the execution costs of the agent’s
trading activity, and the impact of the agent’s orders on the midprice.

We work on a filtered probability space
(
Ω,F ,P;F = (Ft)t∈[0,T ]

)
satisfying

the usual conditions, where T > 0. We assume this probability space to be
large enough to support all the processes introduced in this section.

Inventory. At time t = 0, the agent holds an initial inventory composed
of Q0 shares. The agent wishes to liquidate this position by some terminal
time T > 0. The trader’s inventory over [0, T ] is modelled by the process
(Qν

t )t∈[0,T ] whose dynamics are

dQν
t = νt dt, (16)
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where (νt)t∈[0,T ] is the control process, i.e., the variable that the agent controls
in the optimisation problem. Similar to Section 4, the value of νt at time t
stands for the trading speed, i.e., the instantaneous trading volume of the
agent. Here, we do not restrict the sign of the agent’s control ν. When
νt > 0, the agent is buying shares, and when νt < 0 , the agent is selling
them. Note that when a process has the control ν as a superscript, then it
means that the process is (indirectly) controlled by the agent’s decisions.

Midprice. The midprice process is modelled by the process (Sν
t )t∈[0,T ], and

it is affected by the speed of trading ν. We assume this impact is linear and
we write the dynamics of the midprice as

dSν
t = σ dWt + k νt dt, S0 ∈ R⋆

+ is known, (17)

where W is a standard Brownian motion, σ > 0 is the volatility parameter,
and k ≥ 0 scales the magnitude of the permanent market impact.

Execution costs. At any one time t, the number of shares displayed (or
equivalently the number of LOs resting in the book) at each price level is
limited. A large MO will walk the book, so the average price per share will
be worse than the current midprice; see the discussions in Section 1.2. More
precisely, the execution price per share received by the agent is S̃ν

t = Sν
t +η νt.

7

So the agent’s cash process (Xν
t )t∈[0,T ] satisfies the SDE

dXν
t = −νt S̃t dt = −νt (St + η νt) dt, X0 ∈ R is known. (18)

5.2 Performance criterion

In the CJ framework, although the agent’s real objective is to complete
the liquidation of her initial inventory, the model allows to fall short of this
target so QT ̸= 0; the fuel constraints are thus dropped. However, at the
end of the trading window, the agent must execute a buy or a sell MO for
the remaining amount so they incur additional costs that this trade might
cause. To model this aspect, the CJ framework introduces a terminal inven-
tory penalty parameterised by a terminal penalty parameter α ≥ 0. This
parameter includes any costs from walking the book and any other penalties

7We drop the market volume V and assume it is incorporated in the estimation of η.
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that the agent incurs. In practice, the agent might (and usually does) artifi-
cially inflate the value of α to enforce total liquidation by the terminal time
T.

The CJ framework also introduces another penalty term in the model; a

running inventory penalty of the form ϕ
∫ T

0 (Qν
t )

2 where ϕ ≥ 0 is the
urgency parameter. The running inventory penalty does not impact the
wealth of the agent; recall the dynamics of the cash in (18). This term must
be considered as a means for the agent to incorporate an artificial cost for
holding inventory throughout the trading window. This parameter allows
the agent to model their urgency to get rid of inventory. Higher values of ϕ
lead to quicker execution because it (artificially) increases the cost of holding
shares.

We denote by At the set of admissible strategies (or controls) that are

F−predictable and square integrable, i.e., E
[∫ T

t g2s ds
]
< ∞, and we denote

by A = A0. The agent’s performance criterion in the CJ framework is com-
posed of three components, the terminal wealth, the terminal penalty, and
the running inventory penalty, and we write

Hν(t, x, S, q) = Et,x,S,q

 Xν
T︸︷︷︸

Terminal Cash

+Qν
T (S

ν
T − αQν

T )︸ ︷︷ ︸
Terminal Execution

− ϕ

∫ T

t

(Qν
u)

2︸ ︷︷ ︸
Inventory Penalty



= Et,x,S,q

Xν
T +Qν

T S
ν
T︸ ︷︷ ︸

Terminal Wealth

− (αQν
T )

2︸ ︷︷ ︸
Terminal Penalty

− ϕ

∫ T

t

(Qν
u)

2︸ ︷︷ ︸
Inventory Penalty

 ,
where Et,x,S,q denotes the expectation conditional (with a slight abuse of no-
tation) on Xν

t = x, Sν
t = S, and Qν

t = q. The value function is

H(t, x, S, q) = sup
ν∈A

Hν(t, x, S, q).

5.3 Solution

To solve this optimal trading problem, we use the tools of stochastic op-
timal control; see Section 1.5.2. The dynamic programming principle (DPP)
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suggests that the value function H satisfies the HJB equation

∂tH + sup
ν∈At

(
Lν
tH − ϕ q2

)
= 0,

subject to the terminal condition H(T, x, S, q) = x+ q S − α q2, where Lν is
the infinitesimal generator of the processes of the problem X, S, and Q, i.e.,

Lν
t = LX + LQ + LS

and it acts on the value function H. Recall the SDEs in (16)-(17)-(18), thus
LS = 1

2 σ
2 ∂SS + k ν ∂S, LQ = ν ∂q, and LX = −ν (S + ην) ∂x.

By substituting in the HJB above, and keeping only the terms in ν in the
supremum term, we obtain the HJB

0 =

(
∂t +

1

2
σ2 ∂SS

)
H − ϕ q2

+ sup
ν

{−ν (S + η ν) ∂xH + k ν ∂SH + ν ∂qH} ,

(20a)

with terminal condition

H(T, x, S, q) = x+ S q − α q2, ∀ (x, S, q) ∈ R3.

The first-order condition allows us to obtain the optimal speed in feedback
form, i.e., the optimal trading speed as a function of the value function (and
state variables):

ν⋆ =
1

2 η

−S ∂xH + k ∂SH + ∂qH

∂xH
. (21)

Upon substituting the optimal feedback control (21) into the HJB (20a), it
reduces to

0 =

(
∂t +

1

2
σ2 ∂SS

)
H − ϕ q2

+
1

4 η

(−S ∂xH + k ∂SH + ∂qH)2

∂xH

(22a)

To further study our optimal trading problem, we must solve the HJB
(22a) which takes the form of a nonlinear PDE in H. The usual approach is
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to guess a functional form for H in order to reduce the dimensionality of the
problem and obtain PDEs that can be solved in closed-form.8 To propose
a guess for a functional form (an ansatz) for the solution to the HJB , it is
helpful to look at the boundary or terminal conditions to get an idea of which
variables are relevant in the value function.

The terminal condition above suggests the ansatz

H(t, x, S, q) = x+ q S + h(t, S, q) , (23)

where h(t, S, q) is still to be determined. The ansatz (23) has a simple in-
terpretation. The first term is the accumulated cash, the second term is the
book value of the inventory marked-to-market (i.e. the value of the shares at
the current midprice), and the last term is the added value from optimally
liquidating the remaining shares.

Substitute (23) into (22a) to obtain the new PDE in h(t, q):

0 =

(
∂t +

1

2
σ2 ∂SS

)
h− ϕ q2 +

1

4 η
(k (q + ∂Sh) + ∂qh)

2 ,

subject to the terminal condition

h(T, S, q) = −α q2.

The above PDE contains no explicit dependence on the state variable S and
the terminal condition is independent of S as well. It follows that h does not
depend on S so ∂Sh(t, S, q) = 0 and we write h(t, S, q) = h(t, q). Thus, we
obtain the PDE for h :

0 = ∂th− ϕ q2 +
1

4 η
(k q + ∂qh)

2 , (24)

and the optimal feedback control in (21) simplifies to

ν⋆ =
1

2 η
(k q + ∂qh) . (25)

In the form (24) of the PDE, it appears that the solution admits a separa-
tion of variables and takes the form of second-degree polynomial in q; this will

8Note that closed-form solutions of non-linear PDEs are very rarely obtained.
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be the case in all the optimal trading models of this course because we are
purposefully in the classical and tractable linear-quadratic-Gaussian (LQG)
control framework.

h(t, q) = h0(t) + h1(t) q + h2(t) q
2 . (26)

Upon substituting (26) in the PDE (24), we obtain that for all q ∈ R,

0 =

{
∂th2 (t)− ϕ+

1

4 η
(k + 2h2 (t))

2

}
q2

+

{
∂th1 (t) +

1

2 η
h1 (t) (k + 2h2 (t))

}
q +

{
∂th0 −

1

4 η
h1 (t)

2

}
.

Clearly, if the equality above is verified for all q, then each coefficient of
the polynomial must be equal to zero, so we obtain the system of ODEs

0 = ∂th2 (t)− ϕ+ 1
4 η (k + 2h2 (t))

2

0 = ∂th1 (t) +
1
2 ηh1 (t) (k + 2h2 (t))

0 = ∂th0 − 1
4 η h1 (t)

2 ,

subject to the terminal conditions h2(T ) = −α, h1(T ) = 0, and h0(T ) = 0.

Clearly, the solution to the ODE in h1 is h1(t) = 0, so the solution to the
ODE in h0 is also zero. The non-linear ODE in h2 is of Riccati type and
can be integrated exactly; Riccati ODEs frequently arise in linear-quadratic-
Gaussian control problems and there is an extensive literature on the study
of existence, solutions, and numerical approximations of these equations (see
e.g., Abou-Kandil et al. (2012)).

First, let h2(t) = −k
2 + h2(t), so the ODE in h2 can be solved by solving

the ODE in h2:
∂th2

η ϕ− h22
=

1

η
,

subject to the terminal condition h2(T ) = k
2 − α. Integrating both sides of

the above over the remaining trading window [t, T ] yields

log

√
ηϕ+ h2(T )√
ηϕ− h2(T )

− log

√
ηϕ+ h2(t)√
ηϕ− h2(t)

= 2γ (T − t) ,
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so that

h2(t) =
√
ηϕ

1 + ζe2γ(T−t)

1− ζe2γ(T−t)
,

where

γ =

√
ϕ

η
and ζ =

α− 1
2k +

√
ηϕ

α− 1
2k −

√
ηϕ
.

We have fully determined the solution to the HJB and the optimal trading
strategy ν⋆ can be obtained explicitly from the feedback form (25) and we
write

ν∗t = −γ ζ e
γ(T−t) + e−γ(T−t)

ζ eγ(T−t) − e−γ(T−t)
Qν∗

t . (27)

The optimal speed (27) is proportional to the investor’s current inventory
Qν⋆

t (Qν⋆
t is the agent’s inventory when they trade with the strategy ν⋆), and

the proportional factor depends non-linearly on time. From the formula of
the optimal speed (27), we can obtain the agent’s inventory. First use (25)
and note that

dQν⋆

t = ν⋆t dt =
1

η
h2(t)Q

ν⋆

t dt

so that

Qν⋆

t = Q0 exp

{∫ t

0

h2(s)

η
ds

}
.

Finally, to obtain the explicit optimal trading curve Qν⋆, we compute the
integral as∫ t

0

χ(s)

η
ds =

1

k

∫ t

0

√
η ϕ

1 + ζe2γ(T−s)

1− ζe2γ(T−s)
ds

= γ

∫ t

0

e−2γ(T−s)

e−2γ(T−s) − ζ
ds+ γ

∫ t

0

ζe2γ(T−s)

1− ζe2γ(T−s)
ds

= log
(
e−γ(T−s) − ζeγ(T−s)

)
|t0

= log
ζeγ(T−t) − e−γ(T−t)

ζeγT − e−γT
,

hence

Qν∗

t =
ζ eγ(T−t) − e−γ(T−t)

ζ eγT − e−γT
Q0. (28)
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5.4 Discussion

Deterministic strategy. Observe that the optimal strategy is determinis-
tic even though we did not restrict the space of admissible strategies to that
of deterministic ones. Thus, the optimal trading curves and model parame-
ters can be estimated prior to the trading window and market operators can
focus on the second layer. The CJ framework has been widely adopted in the
literature and the industry because it is tractable.

Infinite penalty. In the limit when the quadratic liquidation penalty goes
to infinity, i.e., when α → ∞, we obtain ζ −→

α→∞
1 and the optimal trading

speed and trading curve simplify to

Qν∗

t −−−−→
α→+∞

sinh (γ(T − t))

sinh (γT )
Q0,

and

ν∗t −−−−→
α→+∞

γ
cosh (γ(T − t))

sinh (γT )
Q0 .

Both equations do no depend on the permanent impact k and resemble those
obtained in the classical Almgren-Chriss model with hard constraint; see
equations (14) and (15). However, when α < ∞, the strategy does depend
on the permanent impact k.

Next, we study the optimal trading curve given by the model as a function
of model parameters. Figure 12 shows the optimal trading curve (28) for
different values of model parameters.

Terminal penalty. Figure 12 shows that the terminal penalty mainly plays
a role at the end of the trading window. For fixed execution costs η, the agent
can leave some terminal penalty to execute at the end of the trading window if
the relative terminal cost α is small. Note that when α = 0.1, the liquidation
is completed by the terminal time T.

Running inventory penalty. As the running penalty increases, the trad-
ing curves become more convex and the optimal strategy aims to sell more
assets sooner in the trading window. This is intuitive because ϕ is the agent’s
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urgency and penalises holding inventory. When ϕ approaches zero, the opti-
mal curve resembles a straight line, this is because

Qν⋆

t −→
ϕ→0

t

T + k/α
.

Execution costs. As the execution costs driven by η increase, the agent
trades slowly. Also, when the execution costs are significantly lower than the
terminal penalty, the agent will choose to liquidate with a block order at the
terminal time and avoid trading throughout the trading window.

Permanent impact. The permanent impact plays a less significant role
than other model parameters; recall that it played no role in the Almgren-
Chriss framework with hard constraints, and it also does not play a role when
we consider an infinite terminal penalty α → ∞.
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Figure 12: Optimal trading curve (28) for multiple values of the parame-
ters: terminal penalty α, running inventory penalty ϕ, execution costs η, and
permanent impact k. The default parameter values are α = 0.01, ϕ = 0.01,
k = 0.001, and η = 0.001. The other parameters are T = 1 and q0 = 1.
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6 Optimal execution with nonlinear impact

Section 5 assumed that the instantaneous impact (execution costs) of the
agent’s trading activity in (18) is linear in the speed of trading. This as-
sumption is key for solving the problem because we are able to frame the
optimisation problem in a linear-quadratic-Gaussian framework which lead
to Riccati equations that can be either solved explicitly or efficiently solved
with numerical approximation techniques. In Section 1.2, we showed that a
linear model is a good approximation for this impact. However, the recent
literature argues that a power law function f : ν 7→ |ν|a with power a > 0 less
than one fits the observed data better. Here, we study the problem of opti-
mal execution when the instantaneous costs are driven by a general nonlinear
function f of the trading speed ν.

6.1 Modelling framework

The model that we consider here is similar to that of Section 5. We work
on a filtered probability space

(
Ω,F ,P;F = (Ft)t∈[0,T ]

)
satisfying the usual

conditions, where T > 0.

Inventory. At time t = 0, the agent holds Q0 shares that she wishes to liq-
uidate by T > 0. The agent’s inventory is modelled by the process (Qν

t )t∈[0,T ]
whose dynamics are

dQν
t = νt dt,

where (νt)t∈[0,T ] is the trading speed. When Q0 ≥ 0 the execution problem is
that of a liquidation, and when Q0 ≤ 0 it is an acquisition problem.

Midprice. The midprice process (Sν
t )t∈[0,T ] is affected by the speed of trad-

ing ν and we write

dSν
t = σ dWt + k νt dt, S0 ∈ R⋆

+ is known,

where W is a standard Brownian motion, σ > 0 is the volatility, and k ≥ 0.

Execution costs. At any one time t, the execution price per share received
by the agent is S̃ν

t = Sν
t − f(νt) where f : R 7→ R is a nonlinear function. So

the agent’s cash process (Xν
t )t∈[0,T ] satisfies the SDE

dXt = −νt S̃t dt = −νt (St + f(νt)) dt, X0 ∈ R is known.
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Note here that f(νt) is the (instantaneous) cost per-share at time t when
trading νt. Thus, the net cost is νt f(νt). For the problem to be well-posed,
we define the function

F : ν 7→ ν f(ν),

and we assume that it is convex. Note that this assumption holds for the
linear model of Section 5 where f : ν 7→ η ν with η > 0. It also holds for
general power-law functions f : ν 7→ η νa where a > 0.

6.2 Performance criterion

We consider the same admissible set A as that of Section 5 and the same
performance criterion

Hν(t, x, S, q) = Et,x,S,q

[
Xν

T +Qν
T S

ν
T − (αQν

T )
2 − ϕ

∫ T

t

(Qν
u)

2

]
,

and the value function is

H(t, x, S, q) = sup
ν∈A

Hν(t, x, S, q).

6.3 Solution

The dynamic programming principle (DPP) suggests that the value func-
tion H should satisfy the HJB

0 =

(
∂t +

1

2
σ2∂SS

)
H − ϕq2 + sup

ν
{(−ν (S + f(ν)) ∂x − k ν ∂S + ν∂q)H} ,

subject to the terminal condition

H(T, x, S, q) = x+ q (S − α q) .

Here, we follow similar steps as in Section 5. First, we use the usual ansatz

H(t, x, S, q) = x+ q S + h(t, q) ,

which separates the value function into two components: (i) the book value
of cash and inventory and (ii) the value of optimally trading the remaining
shares.
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Substitute the ansatz into the DPE to obtain the following non-linear PDE
for h:

0 = ∂th− ϕq2 + sup
ν

{−ν f(ν)− (k q − ∂qh) ν} , (30)

subject to the terminal condition

h(T, q) = −α q2.

Recall that F (ν) = ν f(ν) is a convex function, so the supremum term can
be solved and we write

sup
ν

{−ν f(ν)− (k q − ∂qh) ν} = F̃ (− (k q − ∂qh)) ,

where F̃ is the Legendre-Fenchel transform of the function F (See Definition
1).

The case of a power law. Assume for simplicity that Q0 < 0 and that we
restrict the trading speed to be positive to enforce acquisition only. Assume
that the execution costs function is, for 0 < a ≤ 1,

f : x 7→ η νa

so
F : x 7→ η ν1+a.

Then
F̃ (p) = sup

x

{
x p− η x1+a

}
.

The above supremum can be found with a first order condition

p− η (1 + a) (x∗)a = 0 ⇒ x∗ =

(
p

(1 + a) η

) 1
a

,

so the Legendre-Fenchel transform of F is

t̃F (p) = ξp1+
1
a , ξ =

a η

((1 + a) η)1+
1
a

.

The nonlinear PDE (30) becomes

∂th− ϕq2 + F ∗ (−(k q + ∂qh)) = 0, and h(T, q) = −αq2. (31)
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6.4 Discussion

The PDE (31) can rarely be solved analytically and one usually uses nu-
merical approximation techniques based on grids to obtain a solution that
can be implemented. In practice, operators need to obtain optimal trading
schedules for a very large number of trades every day and often consider
portfolio trades (see Sections 11 and 12). The numerical PDE techniques
suffer from the curse of dimensionality because the number of equations to
solve grows exponentially with the number of assets and the number of state
variables in the model.

Realistic models for multiple assets that contain many variables to describe
the environment are not practical. Numerical approximations take too long
to compute and implement by the agent in real time. In practice, the prof-
itability of execution and arbitrage strategies relies on computing the strategy
within very short periods of time (e.g., milliseconds). Thus, because speed
is paramount for market operators, they usually prefer to derive strategies
in closed-form or that can be reduced to solving ODEs because they can be
deployed in real time. However, this section illustrates how difficult it is to
obtain closed-form strategies once the agent considers slightly more compli-
cated models of the financial markets.

Concerning the specific case of linear versus nonlinear execution costs,
some researchers argue that, given the extremely low predictive accuracy
of market impact models (typically less than 5% R-squared), the cost of
increased complexity that arise from moving away from a linear model would
outweigh any gains from better describing market impact. Nonetheless, it is
worthwhile to investigate the problem in practice to assess if the new model
improves performance.
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7 Optimal trading with predictive signals

A recent and important stream of the optimal execution literature deals
with adding predictive signals of future price changes.9 Typical examples of
these signals include a drift in asset prices, order book imbalances, forecasts of
the future order flow of market participants, and other price-based technical
indicators. The usual formalism in the literature with predictive signals is
to consider Brownian or Black-Scholes dynamics, along with independent
mean-reverting Markov signals. The case of Ornstein-Uhlenbeck-type signals
is of special interest as it usually leads to closed-form formulas. The model
presented below uses the CJ framework introduced in Section 5.

7.1 Modelling framework

Consider a filtered probability space
(
Ω,F ,P;F = (Ft)t∈[0,T ]

)
, with T > 0,

satisfying the usual conditions and supporting all the processes we introduce
below.

An agent must choose the trading speed at which they send market orders
to liquidate Q0 ∈ R shares over a trading window [0, T ] where T > 0. We
denote the trading speed, which is what the investor controls, by ν = (νt)t∈[0,T ]
and inventory is Q = (Qt)t∈[0,T ], which is affected by how fast she trades, and
satisfies

dQν
t = νt dt. (32)

We denote by (Sν
t )t∈[0,T ] the process describing the dynamics of the mid-

price. The agent uses a price predictor (alpha signal) (µt)t∈[0,T ] that drives the
stochastic drift of the midprice process. The process µ is assumed Markov,
cadlag, and bounded P−a.s.. Also, the investor’s trading activity affects the
midprice process in two ways. One is permanent (linear) and the other is
temporary. The process Sν satisfies the SDE (stochastic differential equa-
tion)

dSν
t = µt dt+ k νt dt+ σ dWt, Sν

0 = S0, (33)

where W = (Wt)t∈[0,T ] is a standard Brownian motion, and µ is assumed
independent of W.

9This stream of the literature is closely related to the multi-asset optimal execution models below: when
trading an asset, the dynamics of another asset within or outside the portfolio can be regarded as a predictive
signal that can enhance the execution process.
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At any time t, the MO of the agent walks the book, and the average price
per share obtained is worse that the current midprice St. Here, an MO of
order νt dt obtains an execution price per share of

S̃ν
t = Sν

t + η νt ,

where η is a non-negative constant.

In the dynamics above, the impact of the MO is temporary and only affects
the price received by the agent. Moreover, the LOB recovers infinitely fast
to its state previous to the arrival of the MO (resilience); See Section 1.2
for further discussions on the modelling assumptions for market impact and
Section 8 for a model with transient impact. The investor’s cash process
(Xν

t )t∈[0,T ] satisfies the SDE

dXν
t = −S̃ν

t νt dt = − (Sν
t + η νt) νt dt, Xν

0 = X0. (34)

7.2 Performance criterion

The agent’s performance criterion is

Hν (t, x, s, µ, q) = Et,x,s,µ,q

[
XT +Qν

T (Sν
T − αQν

T )− ϕ

∫ T

t

(Qν
u)

2 du

]
, (35)

where Et,x,s,µ,q is the expectation conditioned on (with a slight abuse of no-
tation) Xt = x, St = S, µt = µ, and Qt = q. The value function H :
[0, T ]×R4 7→ R of the agent is

H (t, x, s, µ, q) = sup
ν∈A

Hν (t, x, s, µ, q) , (36)

where A is the set of admissible strategies consisting of F−predictable pro-

cesses that satisfy
∫ T

0 |νu| du <∞, P−a.s..

As usual, the right-hand side of the performance criteria (35) is composed
of three terms. The first term is the agent’s terminal cash from liquidating
the shares throughout the trading horizon. The second is the proceeds from
liquidating any remaining inventory Qν

T at the terminal time T . This terminal
inventory is liquidated at the midprice Sν

T and the agent incurs the costs
associated to crossing the spread, liquidity taking fees, and market impact,
which is captured by the liquidation penalty parameter α ≥ 0. Finally, the
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third term is the running penalty ϕ
∫ T

t (Qν
u)

2 du where ϕ ≥ 0 is the inventory
penalty parameter. This penalty is an urgency parameter and does not affect
the investor’s revenues.10

7.3 Solution

The dynamic programming principle for the value function suggests that
H in (36) satisfies the HJB (use the dynamics in (32)-(33)-(34)):

0 =
(
∂t +

1
2σ

2 ∂SS
)
H + LµH − ϕ q2

+ sup
ν

{(
− ν (S + η ν) ∂x + (µ+ k ν) ∂S + ν ∂q

)
H
}
,

with terminal condition H (T, x, s, µ, q) = x+ q s− α q2 .

To solve (37), we propose the ansatz

H(t, x, s, µ, q) = x+ q s+ h(t, q, µ) ,

which has the usual simple interpretation. The first term is the accumulated
cash x, the second term is the book value q s of the inventory marked-to-
market (i.e. the value of the shares at the current midprice), and the last term
h(t, q, µ) is the added value from following an optimal trading strategy using
the predictive signal µ up to the terminal date. We find, upon substitution
of the ansatz, that the HJB (37) becomes

0 = ∂th+ Lµh− ϕ q2 + µ q + sup
ν

{
− η ν2 + ν (k q + ∂qh)

}
, (38)

with terminal condition h (T, q, µ) = −α q2 .
The optimal trading speed in feedback form is obtained by solving the

first-order condition in (38) and we write

ν⋆ =
k q + ∂qh

2 η
. (39)

10Including this running inventory penalty is also justified in a setting where the agent considers model
uncertainty – i.e. she is ambiguity averse. Cartea et al. (2017) show that including the running penalty is
equivalent to the agent considering alternate models with stochastic drifts, but penalizes those models using
relative entropy. In that setting, the higher the value of φ, the less confident is the agent about the trend of
the midprice.

56



Substitute (39) in (38) to obtain

0 = ∂th+ Lµh− ϕ q2 + µ q +
(k q + ∂qh)

2

4 η
. (40)

Due to the existence of a linear and a quadratic term in q in (40) and the
form of the terminal condition of h, we assume the ansatz

h(t, µ, q) = h0(t, µ) + q h1(t, µ) + q2 h2(t, µ) . (41)

Substitute (41) in (38) and collect the terms in q to find the coupled system
of PDEs: 

0 = (∂t + Lµ)h0 +
1
4 ηh

2
1

0 = (∂t + Lµ)h1 + µ+ 1
2η h1 (k + 2h2)

0 = (∂t + Lµ)h2 − ϕ+ 1
4η (k + 2h2)

2 ,

(42)

with terminal conditions h0 (T, µ) = h1 (T, µ) = 0 and h2(T, µ) = −α.
Note that the equation in h2 in (42) contains no source terms in µ and

its terminal condition does not depend on µ, thus the solution must be inde-
pendent of µ and h2 is only a function of time. Then h2 solves the (Riccati)
ODE

0 = h′2(t)− ϕ+
1

4η
(η + 2h2(t))

2 ,

which can be solved explicitly:

h2(t) =
√
η ϕ

1 + ζ e2 γ (T−t)

1− ζ e2 γ (T−t)
− 1

2
k ,

where

γ =

√
ϕ

η
, and ζ =

α− k
2 +

√
η ϕ

α− k
2 −

√
η ϕ

.

To solve the equation in h1 in (42), first note it is a linear PIDE where µ
is a source term and where h2 +

k
2 is a discount rate. The general solution

(probabilistic representation) of such an equation can be obtained using the
Feynman-Kac theorem and we write

h1(t, µ) = Et,µ

[∫ T

t

exp

{
1

η

∫ u

t

(
h2(s) +

1
2k
)
ds

}
µu du

]
,
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which is simplified to

h1(t, µ) = −
∫ T

t

(
e−γ(T−u) − ζeγ(T−u)

e−γ(T−t) − ζeγ(T−t)

)
Et,µ [µu ] du .

Finally, we obtain h0 by a straightforward application of Feynman-Kac:

h0(t, µ) =
1

4 η

∫ T

t

Et,µ

[
h21(t, µ)

]
.

The next theorem, which is beyond the scope of this course, shows that
the candidate solution we obtain in this section is indeed the solution to the
optimal control problem.

Theorem 2. The candidate value function defined in and (41) is indeed the
solution to the control problem (36). The trading speed given by

ν∗t = −γ ζe
γ(T−t) + e−γ(T−t)

ζeγ(T−t) − e−γ(T−t)
Qν∗

t +
1

2η

∫ T

t

(
ζeγ(T−u) − e−γ(T−u)

ζeγ(T−t) − e−γ(T−t)

)
E [µu | Fµ

t ] du

(43)
is admissible and is optimal. Fµ

t is the natural filtration generated by µ.

Proof. We obtained a classical solution (C1 in time and C2 is the state vari-
ables) so standard results (see Pham (2009)) imply that it suffices to check
that the feedback control is admissible. From the feedback form in (39) we
obtain the optimal control (43). Since µ is assumed bounded from above a.s.,
then ν⋆ is bounded from above and below a.s. and is therefore admissible.

The Almgren-Chriss strategy. The Almgren-Chriss strategy is a special
case of the model presented in this Section, and corresponds to the case µ ≡ 0.
In that case, the optimal trading speed is

νACt = −γ ζe
γ(T−t) + e−γ(T−t)

ζeγ(T−t) − e−γ(T−t)
Qν∗

t

and corresponds to the classical CJ framework in Section 5 equation (27).
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The optimal strategy. The first term in (43) corresponds to the classi-
cal Almgren-Chriss strategy in Section 4 equation (15). The second term in
(43) is a speculative component, it adjusts the speed of trading using the
weighted average of the future expected value of the signal µ over the re-
mainder of the trading window, i.e., [t, T ]. In particular, the strategy gives
more weight to signal values near t, and the contribution of the expected
drift values decreases as it approaches the trading horizon (because of the
terminal penalty).

Also, note that when the expected weighted drift value is positive (if the
signal predicts an increase of the price on average in the future), then the
agent increases the speed of trading (buys the asset), and when the expected
weighted drift is negative, the agent decreases the trading speed.

Finally, note that the speculative component in (43) is more significant
when the ratio k

η is large. Thus, when the permanent impact is large and the
execution costs are low, the agent speculates more.

The following section presents some specific uses of the optimal strategy
when using LOB-based price predictors or using the trading flow of other
agents. Both sections are based on the works Cartea et al. (2023e) and
Cartea and Jaimungal (2016b), respectively.

7.4 Imbalance and MACD

Here, we explore the use of two popular predictive signals. One is volume
imbalance in the LOB, and the second is the Moving Average Convergence
Divergence. Many works investigate the predictive power of the volume im-
balance on the future midprice; see Bechler and Ludkovski (2015); Cont et al.
(2022); Cartea et al. (2023e). Volume imbalance has been shown to consid-
erably boost profits of execution and market making strategies; see Cartea
et al. (2018a). The MACD is shown to measure the strength of the trend in
prices; see Baz et al. (2015).

The volume imbalance signal process
(
I1t
)
t∈R+ is given by

I1t =
QB

t −QA
t

QB
t +QA

t

∈ [−1, 1] , (44)

where
(
QA

t

)
t∈R+ and

(
QB

t

)
t∈R+ are the aggregated volume of limit orders rest-

ing on the best bid and best ask at event time t, respectively. Volume im-
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balance captures the difference between the buy and sell pressure; values of
I1t close to 1 indicate that the ask queues are relatively short, so it is likely
to see a price increase within the next few events. Similarly, when volume
imbalance is close to −1, the ask queues are relatively short, so it is likely to
see a price decrease within the next few events.

MACD is designed to identify recent trend changes. In discrete event time,
the MACD signal

(
I2t
)
t∈R+

is given by{
S̃t = Eε1 (St)− Eε2 (St) ,

I2t = 105
(
S̃t − Eε3

(
S̃t

))/
St−ε2−ε3 ,

(45)

where (St)t∈R+ is the mid-price process, and ε2 > ε1 and ε1, ε2, ε3 are positive
integer constants. The exponential moving average Eε(xt) for a discrete-
process x observed at event frequency ∆t is obtained recursively with

Eε(xt) = ε xt + (1− ε) E(xt−∆t) ,

where Eε(x0) = x0 . The decay parameter ε is given by ε = 1−exp (− log 2 / h) ,
where h is the half-life of the exponential decay.11

Ticker Avg. spread Avg. queue size Avg. queue size Events
(in ticks) best bid best ask per minute

AAPL 1.48 532.72 543.38 4472.36

AMZN 1.44 512.35 517.36 3939.42

BIDU 11.37 141.48 152.81 187.09

COST 24.62 73.39 72.33 177.15

DELL 1.60 396.65 390.34 361.98

GOOG 1.43 496.99 514.38 2766.57

INTC 1.16 5247.56 5197.65 1458.23

Table 1: Descriptive statistics of transaction data between 1 October 2022
and 31 December 2022.

11The MACD in (45) involves three different exponential filters. The filters Eε1 and Eε2 are applied to
the price St to obtain S̃t. The value of S̃ is an estimate of the rate of change of the midprice, and I2 is an
estimate of the acceleration rate of the midprice; when prices accelerate upward (downward), the value of
MACD is large and positive (negative).
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We use the data described in Table 1 to compute the two signals. We use
the volume at the best bid and best ask quotes to compute the imbalance in
(44), and we use ε1 = 12, ε2 = 26, and ε3 = 9 events to compute the MACD
in (45). Figure 13 shows the average price innovation conditional on each
signal value, 20 and 100 events ahead.
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Figure 13: Left: Average price innovation after 20 events (top) and 100
events (bottom) normalised by the average bid-ask spread, as a function of
MACD values. Right: Average price innovation after 20 events (top) and 100
events (bottom) normalised by the average bid-ask spread, as a function of
imbalance values; data is between October 2022 and December 2022.

Figure 13 shows that both signals have predictive power for the future
price innovation 20 and 100 events ahead, which corresponds to time horizons
ranging from approximately 1 to 30 seconds in the data we consider. Figure
13 indicates that, over the period that we consider, the imbalance is a short-
term momentum signal, while MACD is a mean reversion signal for some
securities and a momentum signal for others. Also, Figure 14 shows that
both signals are mean reverting.

To apply our findings to optimal execution with volume imbalance or
MACD, we consider the following mean-reverting dynamics for the predictive
signal µ

dµt = −κµt + ξdBt , (46)
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Figure 14: Imbalance and MACD signals for AAPL.

where κ drives the mean reversion speed to 0; see Figure 14, (Bt)t∈[0,T ] is
a standard Brownian motion independent of all other processes, and ξ >
0 drives the dispersion of the signal. Note that all the coefficients of the
Ornstein-Uhlenbeck dynamics above can be classically estimated using least
squares regression.12

Note that the solution to the SDE in (46) for s ≥ t is

µs = e−κ(s−t)µt +

∫ s

t

e−κ(s−t)γ dBt,

so the expected price drift is

E
[
µs
∣∣Fµ

t

]
= e−κ(s−t)µt,

and the optimal trading speed in (43) using the volume imbalance or MACD
is

ν∗t = −γ ζe
γ(T−t) + e−γ(T−t)

ζeγ(T−t) − e−γ(T−t)
Qν∗

t +
1

2η
µt

∫ T

t

ζe2γ(T−u) − 1

ζe2γ(T−t) − 1
e(γ−κ)(u−t)du.

In particular, the optimal trading speed is linear in the signal.

12A time discretisation of an Ornstein-Uhlenbeck model gives rise to an Auto-Regressive model of order
1, or AR(1). The parameters of an AR(1) model are classically estimated by using least squares regression.
Conversion of AR(1) coefficients into their continuous-time counterparts is straightforward.
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7.5 Order flow

In Cartea and Jaimungal (2016b), the authors consider the following model
for µ:

µt = k µ+ − k µ− , (47)

where µ+ is the buying trading flow of other agents, which has a linear per-
manent impact of magnitude k on the midprice, and µ− is the selling trading
flow of other agents, which has also a linear permanent impact of magnitude
k on the midprice.

In particular, they consider the following mean reverting dynamics with
jumps for the order flow on both sides of the book

dµ±t = −κµ±t + b1+N±
t−
dN±

t ,

where κ > 0 determines the speed of mean reversion, N±
t are two Poisson

processes assumed independent of all other processes and with fixed constant
intensity λ, and {b±1 , b±2 , . . . } are non-negative i.i.d. random variables, with
finite first moment, and are also independent of all the other processes in the
problem.

The dynamics above imply that the buying and selling orders arrive in-
dependently according to Poisson times, and induce an increase in the order
flow rate µ± (the so-called self-exciting nature of the order flow).

The solution to the SDE µ± for s ≥ t is

µ±s = e−κ±(s−t)µ±t +

∫ s

t

e−κ±(s−u)η1+L±
u−
dL±

u ,

so the expected drift in the price is

E
[
µ±s
∣∣Fµ

t

]
= e−κ±(s−t)

(
µ±t − ψ±)± ψ±,

where the constants ψ± are given by

ψ± =
1

κ±
λ±E[η±].

For simplicity, we consider the limiting case of the general optimal strategy
(43) when the agent requires that all shares are liquidated at the end of the
trading horizon and sets α → ∞, so the optimal strategy simplifies to

lim
α→∞

ν∗t = −γ cosh(γ(T − t))

sinh(γ(T − t))
Qν∗

t +
1

2 η

∫ T

t

sinh(γ(T − u))

sinh(γ(T − t))
E [µu | Fµ

t ] du.
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In this case, the optimal strategy when using the trading flow of other
agents and considering the dynamics (47) is

lim
α→∞

ν∗t =− γ
cosh(γ(T − t))

sinh(γ(T − t))
Qν∗

t

+
1

2 η

[
ℓ+1 (t)

(
µ+t − ψ+

)
− ℓ−1 (t)

(
µ−t − ψ−)+ ℓ0(t)

(
ψ+ − ψ−)] ,

where

ℓ0(t) =
1

γ

cosh(γ(T − t))− 1

sinh(γ(T − t))

and

ℓ±1 (t) =
1

2

(
eγ(T−t) − e−κ±(T−t)

κ± + γ
− e−γ(T−t) − e−κ±(T−t)

κ± − γ

)/
sinh(γ(T − t)).

7.6 Further readings

Lorenz and Schied (2013) studied the effect of trends in the midprice. The
seminal work in the literature on optimal execution with stochastic signals
is in Cartea and Jaimungal (2016b) who use a general Markov process that
drives the stochastic drift of the asset, and interpret it as the order flow of
other market participants. Later, Cartea et al. (2018a) study volume im-
balance as a price predictor and considers an optimal trading framework
that incorporates order book signals, and Lehalle and Neuman (2019) and
Neuman and Voß (2020) extend the CJ framework to incorporate transient
market impact. Recently, the following works studied market signals in algo-
rithmic trading strategies: Barger and Lorig (2019); Cartea and Wang (2020);
Donnelly and Lorig (2020); Bergault et al. (2022).
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8 Optimal trading with transient impact

The previous sections derived optimal trading strategies that take into
account two types of price impact effects; permanent and instantaneous (or
temporary). In practice, the nature of price changes, after the occurrence of
successive transactions on the same side of the book, involve other dynamical
effects.
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Figure 15: Resilience and transient impact after a large MO. In the first two
panels, an MO walks the book so the next midprice exhibits the temporary
price impact. Immediately after the MO in the third panel, market partici-
pants post new LOs on the ask side so the midprice gradually decays back to
its original value. The difference between the midprice in the last panel and
that of the first panel is the permanent impact of the MO.

t = 0
buy MO walks
the book
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Figure 15 shows that following the impact of a large transaction in the
LOB after an MO walks the book, there is a resulting gap which is not in-
stantaneously replenished. The dynamics used for the midprice and cash in
the previous models suggest that this process is instantaneous. Empirical
evidence from multiple studies show that it takes time for LOs to be sub-
mitted in place of those that were filled. The rate at which these orders are
replenished is called resilience, and thus we say that the models of Sections
3, 4, 5, 6, 7, and 12 consider infinite resilience.

Resilience in the LOB is important when considering the execution costs
of trading activity. Figure 15 shows an idealised situation where sell orders
are gradually replenishing the LOB without any further transaction (MO).
If a subsequent buy MO is sent to the LOB after only a short time following
the first MO, then it would be subjected to higher prices than if it had oc-
curred after a longer time. This difference in transaction price depends on the
amount of time between trades and is called the transient price impact. The
transient price impact was not considered in the previous models which make
the implicit assumption that the agent waits long enough between consecu-
tive trades so the transient impact is negligible. This assumption is realistic
in very liquid markets (e.g., large cap equities) and when the agent does not
trade frequently.

A general formulation of transient price impact can be incorporated in the
dynamics of the midprice. This section describes a model that takes into
account the transient impact of successive market orders. In particular, we
introduce an impact function that describes the instantaneous response of
the LOB to a transaction, and a decay kernel that models the resilience of
the LOB.

8.1 Modelling framework

Consider a filtered probability space
(
Ω,F ,P;F = (Ft)t∈[0,T ]

)
, with T > 0,

satisfying the usual conditions and supporting all the processes we introduce
below.

An agent must choose the trading speed at which they send market orders
to liquidate Q0 ∈ R shares over a trading window [0, T ] where T > 0. The
trading speed is ν = (νt)t∈[0,T ] and the inventory is Q = (Qt)t∈[0,T ] and it
satisfies

dQν
t = νt dt. (49)
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The investor’s trading activity affects the midprice process in two ways.
One is permanent (linear) and the other is transient. We denote by (Sν

t )t∈[0,T ]
the process describing the dynamics of the midprice. A general formulation
of transient price impact can be incorporated into the dynamics of Sν by
introducing a strictly increasing impact function h and a non-increasing decay
kernel function G. The process Sν follows the dynamics

Sν
t = S0 + σWt︸︷︷︸

market

risk

+ k

∫ t

0

νsds︸ ︷︷ ︸
permanent impact

+

∫ t

0

h (νs) G (t− s) ds︸ ︷︷ ︸
transient impact

, (50)

where W = (Wt)t∈[0,T ] is a standard Brownian motion, σ > 0 is the volatility,
and k ≥ 0 is the permanent price impact parameter.

The function h determines the magnitude of transient impact and the decay
kernel G controls how quickly the impact of trading decays through time; see
Figure 15.

At any time t, the average price per share obtained is S̃ν
t and we write

S̃ν
t = Sν

t + η νt ,

where η is a non-negative constant that scales the linear execution costs. The
investor’s cash process Xν = (Xt)t∈[0,T ] satisfies the SDE

dXν
t = −S̃ν

t νt dt = − (Sν
t + η νt) νt dt, Xν

0 = X0. (51)

Performance criterion. The agent’s performance criterion is

Hν (t, x, s, q) = Et,x,s,q

[
XT +Qν

T (Sν
T − αQν

T )− ϕ

∫ T

t

(Qν
u)

2 du

]
, (52)

where Et,x,s,q is the expectation conditioned on (with a slight abuse of nota-
tion) Xt = x, St = S, and Qt = q. The first term on the right-hand side of the
performance criteria (52) is the agent’s terminal cash, the second represents
the proceeds from liquidating any remaining inventory Qν

T at the terminal
time, the third term is a penalty term that captures the cost of liquida-
tion the terminal penalty, and finally, the last term is the running inventory
penalty and models the urgency of execution.

67



8.2 The case of exponential decay

Here, we consider that the decay of the transient impact is exponential and
we write G(t − s) = exp(−β(t − s)) for s ≤ t. The parameter ρ represents
the rate of decay.

Using similar arguments as in Section 1.2 where we proved that perma-
nent impact must be linear to avoid dynamic arbitrage, Gatheral and his
co-authors also obtained an important and similar result for transient im-
pact in Gatheral (2010). Assuming a particular price process, the authors of
Gatheral et al. (2012) demonstrate that a model that combines a nonlinear
impact function h with exponential decay admits price manipulation, which
is an undesirable feature that disqualifies the model.

Thus, we consider a linear instantaneous impact function

h : ν 7→ λ ν.

The coefficient λ determines the distance between the midprices before and
after an MO arrives in the LOB.

To further study our problem, note that the transient component of the
midprice dynamics in (50) is now∫ t

0

λ νs e
−β (t−s) ds.

We define a new state variable (Iνt )t∈[0,T ], where I0 = 0, that quantifies the
accumulated transient impact and we write

Iνt =

∫ t

0

λ νs e
−β (t−s) ds.

The dynamics above solve the following SDE:

dIνt = (λ νt − β Iνt ) dt, I0 = 0,

so the dynamics of the midprice are

dSν
t = σ dWt +

(
λ̃ νt − β Iνt

)
dt, Sν

0 = S0 known. (53)

The performance criterion of the agent becomes

Hν (t, x, s, I, q) = Et,x,s,I,q

[
XT +Qν

T (Sν
T − αQν

T )− ϕ

∫ T

t

(Qν
u)

2 du

]
,
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where Et,x,s,I,q is the expectation conditioned on Xt = x, St = S, It = I, and
Qt = q. The value function H : [0, T ]×R4 7→ R of the agent is

H (t, x, s, I, q) = sup
ν∈A

Hν (t, x, s, I, q) , (54)

where A is the set of admissible strategies consisting of F−predictable pro-

cesses that satisfy
∫ T

0 |νu| du <∞, P−a.s..

Use the dynamics in (49)-(51)-(53) to write the HJB equation associated
with the problem (54) as

0 =∂tH − ϕ q2 +
1

2
σ2 ∂SSH − β I ∂SH − β I ∂IH

+ sup
ν

{
λ̃ ν ∂SH + λ ν ∂IH + ν ∂qH − (S + η ν) ν ∂xH

}
,

subject to the terminal condition

H (T, x, S, I, q) = x+ q S − α q2.

As usual, we use the ansatz

H (t, x, S, I, q) = x+ q S + h (t, q, I) ,

and find the following nonlinear PDE for h(t, q, I):

0 = ∂th− ϕ q2 − β I q − β I ∂Ih+ sup
u

{
ν
(
λ̃ q + λ ∂Ih+ ∂qh

)
− η ν2

}
,(55)

subject to the terminal condition

h (T, I, q) = −α q2.

The supremum term in (55) can be solved with a first order condition, so
the optimal feedback trading speed is

ν⋆ =
λ̃ q + λ ∂Ih+ ∂qh

2 η
, (56)

and the PDE simplifies to

0 =∂th− ϕ q2 − β I q − β I ∂Ih+

(
λ̃ q + λ ∂Ih+ ∂qh

)2
4 η

, (57)
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subject to the same terminal condition.

The terminal condition h (T, I, q) = −α q2 suggests that h is a quadratic
polynomial in q, and the nonlinear PDE (57) suggests that the dependence
on I is also quadratic. We introduce a second ansatz and look for a solution
h(T, q, I) of the following form:

h(t, q, I) = A(t)q2 +B(t) q I + C(t) I2 +D(t) q + E(t) I + F (t) , (58)

for all (t, q, I) ∈ [0, T ]× R × R , or equivalently

h(t, q, I) =

(
q
I

)⊺

P (t)

(
q
I

)
+

(
D(t)
E(t)

)⊺(
q
I

)
+ F (t) ,

where P : [0, T ] → S2(R) is defined as

P (t) =

(
A(t) 1

2B(t)
1
2B(t)⊺ C(t)

)
. (59)

The following result shows that the ansatz (58) leads to a matrix Riccati
equation.

Proposition 2. Assume there exist A ∈ C1 ([0, T ],R), B ∈ C1 ([0, T ],R), and
C ∈ C1 ([0, T ],R) such that P in (59) satisfies the matrix Riccati equation

0 = P ′(t) +Q+ Y ⊺P (t) + P (t)Y + P (t)UP (t), (60)

with terminal condition

P (T ) =

(
−α 0
0 0

)
,

where

Q =

(
−ϕ+ λ̃2

4 η −β
2

−β
2 0

)
, Y =

(
λ̃
2 η 0
λ̃ λ
2 η −β

)
, and U =

1

η

(
1 λ
λ λ2

)
,

then h defined in (58) with D ≡ E ≡ F ≡ 0 solves the PDE (57).

Proof. First, replace the ansatz (58) in the PDE (57). The term stemming
from the supremum in (55) writes(

λ̃ q + λ ∂Ih+ ∂qh
)2

=
(
λ̃+ λB(t) + 2A(t)

)2
q2 + (2λC(t) +B(t))2 I2
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+ 2
(
λ̃+ λB(t) + 2A(t)

)
(2λC(t) +B(t)) q I

+ 2 (λE(t) +D(t))
(
λ̃+ λB(t) + 2A(t)

)
q

+ 2 (λE(t) +D(t)) (2λC(t) +B(t)) I

+ (λE(t) +D(t))2 ,

so we find that for all q and I that the following polynomial is always zero:

0 =

(
A′(t)− ϕ+

1

4 η

(
λ̃+ λB(t) + 2A(t)

)2)
q2

+

(
B′(t)− β − β B(t) +

1

2 η

(
λ̃+ λB(t) + 2A(t)

)
(2λC(t) +B(t))

)
q I

+

(
C ′(t)− 2 β C(t) +

1

4 η
(2λC(t) +B(t))2

)
I2

+

(
D′(t) +

1

2 η
(λE(t) +D(t))

(
λ̃+ λB(t) + 2A(t)

))
q

+

(
E ′(t)− β E(t) +

1

2 η
(λE(t) +D(t)) (2λC(t) +B(t))

)
I

+ F ′(t) + (λE(t) +D(t))2 .

Thus every coefficient of the above polynomial is alway zero. Thus we
obtain the following system of ODEs

0 = A′(t)− ϕ+ 1
4 η

(
λ̃+ λB(t) + 2A(t)

)2
0 = B′(t)− β − β B(t) + 1

2 η

(
λ̃+ λB(t) + 2A(t)

)
(2λC(t) +B(t))

0 = C ′(t)− 2 β C(t) + 1
4 η (2λC(t) +B(t))2

0 = D′(t) + 1
2 η (λE(t) +D(t))

(
λ̃+ λB(t) + 2A(t)

)
0 = E ′(t)− β E(t) + 1

2 η (λE(t) +D(t)) (2λC(t) +B(t))

0 = F ′(t) + (λE(t) +D(t))2 .

This system of ODEs can be decomposed into three groups of equations;
the first three ODEs for A, B and C are independent of the others and can
be solved independently, the linear ODEs for D and E, and finally F . Note
that the ODEs for D and E admit as a (unique) solution D ≡ E ≡ 0 so the
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solution for F is also zero. Thus it remains to study the first group of ODEs.
Defining P as in (59) and the matrices Q, U, and Y as in Proposition 2, we
obtain that P solves indeed the matrix Riccati equation (60).

Using the ansatz (58) in the optimal feedback control in (56) simplifies to

ν⋆ =
λ̃ q + λ (B(t) q + 2C(t) I) + 2A(t)q +B(t) I

2 η
. (61)

8.3 Simulation results

Note that because Iν is deterministic, the strategy also is deterministic.
The Riccati equation (60) cannot be solved in closed-form. However, be-
cause it is an ODE, there exists very efficient approximation techniques to
obtain the solution and study its behaviour.13 Thus, the strategy can be
implemented in practice.

We solve numerically for the solution P to the matrix Riccati equation (60)
and obtain the optimal strategy (61). We use the model parameters T = 1
second, η = 0.01, α = 10, and Q0 = 10. We also set a zero permanent impact
(k = 0) and zero urgency (ϕ = 0) to focus on the effect of transient impact on
the optimal strategy, and we set arbitrary large value of the terminal penalty
to ensure full liquidation.

Figure 16 shows the optimal trading curve for various values of λ. When
λ = 0, the optimal strategy is a straight line, which is a TWAP strategy.
This is expected because when transient impact is zero, and so is permanent
impact and inventory penalty, then the strategy is TWAP. When λ ̸= 0, the
behaviour corresponds to trading at a faster pace closer to the beginning and
the end of the trading period [0, T ], and trading at a slower pace throughout
the trading period. The interpretation is that the agent wishes to minimise
the time when they are trading with high transient price impact. The effect
of transient market impact is larger when there are successive large orders; a
single MO will only suffer execution costs (η) and it is subsequent trades that
incur transient impact costs. By trading quickly early, the agent will spend
more time trading slowly while waiting for the exponential resilience to drive
the price back to a profitable level. When the transient impact has decayed
significantly by the end of the trading window, the agent places again a large

13See the Jupyter notebook https://github.com/FDR0903/HFT course/blob/main/transient im-
pact.ipynb.
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trade to complete the liquidation; see Chen et al. (2019) for more details and
discussions for a simpler yet similar strategy.
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Figure 16: Optimal trading curve with transient impact price impact for vari-
ous values of the transient impact parameter λ. We use the model parameters
k = ϕ = 0, T = 1 second, η = 0.01, α = 10, Q0 = 10, and β = 1.

Figure 17 shows the optimal trading curve for various values of β. When
β = 0, we also obtain a TWAP strategy. This is expected because when there
is no resilience, the transient impact is simply a permanent impact. Also, as
β becomes larger (β = 20 in the figure), the decay becomes instantaneous
and this is close to having zero transient impact. In this case, the strategy is
also a TWAP as discussed above. When β ̸= 0 and β << ∞, the behaviour
of the strategy is the same as that described for Figure 16, i.e., faster trading
at the start and end of the trading window to profit from the resilience of the
LOB.

8.4 Further readings

Lorenz and Schied (2013) investigate the stability of optimal strategies in
the presence of transient price impact with exponential decay and general
dynamics of a drift in the underlying price process accounting for the price
impact of other agents. Obizhaeva and Wang (2013) and Alfonsi et al. (2008)
propose a single-asset market impact model where price dynamics are derived
from a dynamic LOB model with resilience. Alfonsi and Schied (2010) derive
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Figure 17: Optimal trading curve with transient impact price impact for
various values of the decay coefficient β. We use the model parameters k =
ϕ = 0, T = 1 second, η = 0.01, α = 10, Q0 = 10, and λ = 0.5.

explicit optimal execution strategies in a discrete-time LOB model with gen-
eral shape functions and an exponentially decaying price impact. Gatheral
(2010) uses the no-dynamic-arbitrage principle to address the viability of
market impact models. Gatheral et al. (2012) obtain explicit optimal strate-
gies with a transient market impact in an expected cost minimisation setup.
Chen et al. (2019) obtain closed-form strategies with transient impact with
exponential decay when the terminal penalty is infinite.
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9 Optimal trading with limit orders

The previous sections mainly discussed optimal execution strategies that
use market orders (MOs) only. In LOBs, sending MOs guarantees execution.
However, they incur execution costs in the form of the bid-ask spread and
the cost of walking the book due to limited liquidity. In practice, market
operators mainly use limit orders (LOs) that do not cross the spread in an
attempt to reduce execution costs and not reveal their actions by adversely
impacting the midprice. However, LOs are not guaranteed to be executed
due to price priority, i.e., there is no guarantee that an opposing matching
order will arrive at the desired price level. Also, limit orders that are posted
on a level of the LOB are in a queue of previously posted LOs that have time
priority.

9.1 Fill probability

Let St denote the midprice of an asset at time t. An agent that wishes to
buy a quantity ∆Q posts a buy LO – the analysis for sell LOs is identical –
with a desired price level St − δbid. We call δ the depth of the LO and if the
LO is executed, the depth measures the price improvement. The larger the
value of δ, the lower the probability that the order will get executed, because
time and price priority reduce the probability that an order arrives and walks
the LOBs up to the posted depth.

The probability that an order gets filled at a given depth is called the fill
probability, and it naturally decreases with δ. The fill probability depends
on the current state of the LOB. Consider the top panels of Figure 18. The
probability to be filled when posting at the best bid depends on the size of
buy LOs already posted at the best bid, and on the selling pressure on the
other side. Consider now the bottom panels of Figure 18. The probability to
be filled when posting at the second best bid depends on the size of buy LOs
already posted at the best bid and the second best bid, and on the selling
pressure on the other side. Thus, the deeper the LO is posted, the less likely
it is that opposing MOs large enough to walk the LOB will arrive.
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One can use historical data to estimate the fill probability from LOB data
as a function of the depth of the LO. Figure 19 shows the estimated fill
probability of LOs (buy and sell) as a function of its depth for multiple
shares quoted on Nasdaq. The figure shows that fill probability in LOBs has
an power law type of decay, and can be approximated with an exponential
decay.

If one assumes that the volume of individual MOs is exponentially dis-
tributed with mean volume v, and that the LOB, on average, is block shaped
with a fixed height A, i.e., the posted volume at each price level is equal
to a constant A, then one recovers the exponential decay of the fill proba-
bility. More precisely, conditional on the arrival of a sell MO of size v, the
probability that the buy LO is executed is given by

P[execution of LO of depth δ] = P[v > A δ] = exp

{
−A
v
δ

}
. (62)
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Figure 19: Fill probability at different levels of the LOB for multiple shares
quoted on Nasdaq. Source: Arroyo et al. (2023).

We will use the assumption (62) of exponential decay of the fill probability
for our model of optimal trading with LOs but also for the optimal market
making model of Section 10. Although we do not take this into account in the
models of this course, it must be noted that in practice, the fill probability
depends significantly on the time the LO spends in the LOB before being
cancelled or executed. The work in Arroyo et al. (2023) shows that this
dependence can be modelled and estimated; see Figure 20.

9.2 Modelling framework

We work on a filtered probability space
(
Ω,F ,P;F = (Ft)t∈[0,T ]

)
, with T >

0, satisfying the usual conditions. The space supports all the processes we
introduce below.

An agent must liquidate (sell) Q0 > 0 shares over a trading window [0, T ]
where T > 0. We denote by (St)t∈[0,T ] the asset’s midprice which follows the
dynamics

dSt = σ dWt, S0 ∈ R+ is known,

where σ > 0 is the volatility parameter andW is a standard Brownian motion.

The strategy used by the agent relies on continuous post-and-cancel of
sell LOs. At every instant in the trading window [0, T ], the agent reassesses
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Figure 20: Estimate of the survival function when placing LOs at different
depths of the LOB. Left: AAPL, right: AMZN. Source: Arroyo et al.
(2023).

market conditions and the inventory level, cancels any LO resting in the
book, and posts a new sell LO at the optimal depth δ. In particular, the agent
tracks not only their inventory, but also the arrival of MOs from other traders
that will possibly match the agent’s posted LOs. Thus, the process (δ)t∈[0,T ]
denotes the depth at which the agent continuously posts limit sell orders,
i.e., the agent posts LOs at the price St+ δt at time t. δ is an F−predictable
process that is left-continuous with right limits (cádlág).

As discussed in the previous section, the arrival of buy market orders that
are large enough to lift the agent’s sell LO depends on the depth of the LO.
We model the arrival of orders that can reach the depth δ with a (controlled)
counting process

(
N δ

t

)
t∈[0,T ] that counts the number of market buy orders

which reached the agent’s LOs, i.e., it counts MOs which walk the sell side
(ask) of the book to a price greater than or equal St + δt. We assume that
this counting process has an intensity Λ(δ) that depends on δ and we write

Λ(δ) = λ exp(−κ δ) ,

where κ > 0 is the exponential decay parameter. The constant λ represents a
baseline intensity of buy MO orders that arrive in the LOB. Higher values of
the decay parameter κ means that for a fixed depth, the fill probability e−κ δ

decreases, i.e., the number of orders that walk the book to the price St + δt
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decreases.

The agent’s cash process (Xt)t∈[0,T ] satisfies the SDE

dXδ
t = (St + δt) dN

δ
t , X0 ∈ R is known,

and the agent’s inventory (Qt)t∈[0,T ] which remains to be liquidated follows
the dynamics

Qt = Q0 −N δ
t .

We assume here that Q0 is an integer (number of shares), thus the inventory
Q of the agent can only take the values {Q0, Q0 − 1, . . . , 0}

9.3 The performance criterion

The agent wishes to maximise the profit from liquidating the initial inven-
tory Q0 and requires that most of the shares are sold by the terminal time
T. We define the stopping time

τ = T ∧min{t : Qδ
t = 0}

corresponding to the minimum of T and the first hitting time of zero by the
inventory process (Qt)t∈[0,T ] . If the agent holds any remaining inventory at
the end of the trading horizon, they liquidate it using one single MO at the
price Sτ − αQτ , so the agent receives Qτ (Sτ − αQτ) , where α ≥ 0 is the
liquidation penalty (linear impact function).

We consider the admissible space A of strategies δ that are bounded from
below. The agent’s optimisation problem is to find

H(x, S) = sup
δ∈A

E
[
Xδ

τ +Qδ
τ ( Sτ − α Qδ

τ

)
| Xδ

0− = x, S0 = S,Qδ
0− = Q0

]
,

and the corresponding value function is

H(t, x, S, q) = sup
δ∈A

Et,x,S,q

[
Xδ

τ +Qδ
τ(Sτ − αQδ

τ)
]
, (63)

where Et,x,S,q[·] is the expectation conditional on Xδ
t− = x, St = S, and

Qδ
t− = q.

In contrast to Sections 5 and 7, the agent here does not have any urgency.
It is straightforward to extend the present model to one where the agent
penalises inventory that is different from 0.
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9.4 Solution

The dynamic programming principle (DPP) suggests that the value func-
tion (63) solves the following dynamic programming equation (DPE):

∂tH +
1

2
σ2∂SSH

+ sup
δ

{
λe−κδ [H(t, x+ (S + δ), S, q − 1)−H(t, x, S, q)]

}
= 0,

with boundary conditions{
H(t, x, S, 0) = x,

H(T, x, S,Q) = x+ q (S − α q) .

In contrast to previous sections, the optimal trading problem where the
state variables jump result in a non-linear partial integral differential equation
(PIDE) rather than a non-linear PDE. The operator ∂SS corresponds to the
generator of the Brownian motion that drive the midprice, the term

Λ(δ) (H(state variable after jump)−H(state variable before jump))

is the generator of the counting process N that drives the cash and the
inventory of the agent; the difference H(t, x+(S+ δ), S, q− 1)−H(t, x, S, q)
is the change in the agent’s value function when an MO fills the agent’s LO
(increase by S + δ in cash and decrease by 1 in inventory) and λ e−κ δ is the
rate of arrival of other market participants’ buy MOs which fill the agent’s
sell LO.

The terminal condition at t = T represents the cash the agent has acquired
plus the value from liquidating the remaining shares at S − α q per share.
The boundary condition when q = 0 represents the cash that the agent holds
at the stopping time τ .

We use the following ansatz for the value function (see Section 5 for more
details):

H(t, x, S, q) = x+ q S + h(t, q) . (65)

Substitute (65) into the DPE (64) and find that h(t, q) satisfies the coupled
system of non-linear ODEs:

∂th+ supδ
{
λe−κδ [δ + h(t, q − 1)− h(t, q)]

}
= 0,

h(t, 0) = 0,
h(T, q) = −αq2.

(66)
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The optimal depth in feedback form can be obtained by solving the supre-
mum term in (66), which can easily be done with the first order condition:

0 = ∂δ
{
λe−κδ [δ + h(t, q − 1)− h(t, q)]}

= λ
(
−κe−κδ [δ + h(t, q − 1)− h(t, q)] + e−κδ

)
= λe−κδ (−κ [δ + h(t, q − 1)− h(t, q)] + 1

)
,

so the optimal strategy δ⋆ in feedback form is given by

δ∗(t, q) =
1

κ
+ [h(t, q)− h(t, q − 1)]. (67)

The firm term in (67) stems from optimising the instantaneous expected
profits from selling one share. Indeed, observe that the expected revenue of
selling one share at the price S + δ, minus the cost S, is (S + δ − δ) Λ(δ) =
δ e−κ δ , whose maximum is reached for δ = 1/κ. The second term h(t, q) −
h(t, q − 1) can be interpreted as a correction to the static depth 1/κ. This
term is a reservation price and it is equal to the price p such that H(t, x+
p, S, q−1) = H(t, x, S, q), so it is an additional wealth that the agent demands
for selling the asset such that their value function remains unchanged.

Substitute the optimal depth (67) in feedback form into (66) to obtain the
coupled system of ODEs for h(t, q)

∂th+
λ̃

κ
exp {−κ [h(t, q)− h(t, q − 1)]} = 0 ,

where λ̃ = λ e−1. Finally, consider the ansatz

h(t, q) =
1

κ
logω(t, q) , (68)

so the new equation for ω(t, q) is

0 = ∂th+
λ̃

κ
exp {−κ [h(t, q)− h(t, q − 1)]}

=
1

κ

∂tω(t, q)

ω(t, q)
+
λ̃

κ

ω(t, q − 1)

ω(t, q)
,
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which simplifies to

∂tω(t, q) + λ̃ ω(t, q − 1) = 0 , (69)

with terminal and boundary conditions

ω(T, q) = e−κα q2 , and ω(t, 0) = 1 .

The coupled system of ODEs (9.4) can be solved explicitly by completing
the following steps:

(i) Compute ω(t, q) for q = 1share, 2shares, . . . by integrating (9.4).

(ii) Notice that the solution for each q is a polynomial in (T − t) which
increase in order as q increases. Thus, use the ansatz

ω(t, q) =

q∑
n=0

aqn(T − t)n

in the solution and find that the coefficients aqn satisfy the recursion
equations

aqn =
λ̃

n
aq−1
n−1

for n = 1, . . . , q, q = 1, 2, . . . , and aq0 = e−κα q2.

(iii) Show by induction that the above form is indeed correct.

(iv) Show that

aqn =
λ̃n

n!
e−κα (q−n)2,

for n = 1, . . . , q, and q = 1, 2, . . . .

Thus, the solution to system of ODEs us

ω(t, q) =

q∑
n=0

λ̃n

n!
e−κα(q−n)

2

(T − t)n .

The solution provides the function h(t, q) in (68) and the value function
H(t, x, S, q) in (65). Also, the formula for h(t, q) can be substituted in the
feedback formula (67) to obtain the optimal depth

δ∗(t, q) =
1

κ

[
1 + log

∑q
n=0

λ̃n

n! e
−κα(q−n)2(T − t)n∑q−1

n=0
λ̃n

n! e
−κα(q−1−n)2(T − t)n

]
, (70)
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for q > 0.

9.5 Simulations

Here we study the dependence of the quotes over the model parameters,
time, and the agent’s inventory. Figure 21 shows the optimal quotes as a
function of time, inventory, and penalty parameter. The optimal depth de-
creases in the inventory of the agent. The larger the inventory, to more the
agent is willing to accept a lower premium δ to increase the probability that
the sell LO order is filled, which ensures the liquidation of the shares by the
end of the trading horizon and avoids crossing the spread at the terminal
time.

For a fixed inventory level, the optimal depth decreases with time. This
is because the agent becomes more averse to inventory as time passes due to
the terminal penalty α. Also, Figure 21 shows that for a fixed time t and
inventory q, the optimal depth decreases when the penalty α decreases. This
is because increasing the penalty forces the agent to liquidate the position
faster, so the depth at which the LOs ar posted is smaller to increase the
fill probability. Note that near the terminal time, the terminal penalty plays
a more significant role in the optimal depth compared with the start of the
trading window.
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Figure 21: Optimal depth δ⋆ in (70) of the agent’s sell LOs as a function
of time for different values of the inventory. The parameters are λ = 50,
T = 1 minute, κ = 100, and Q0 = 5. On the left panel, the terminal penalty
parameter is α = 10−4 and on the right panel, the terminal penalty parameter
is α = 10−3.

Finally, Figure 22 shows how the quotes react to different values of the
intensity of buy MO arrival κ and the exponential decay parameter κ. Clearly,
larger values of λ imply more buying pressure so the intensity of MOs that
can reach the agent’s LO increase. Thus, the agent exploits this by posting
the LO deeper in the book. On the other hand, higher values of κ imply a
smaller probability that the agent’s LO will be filled when a buy MO arrives.
So the agent decreases the depth at which the LO is posted.
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Figure 22: Optimal depth δ⋆ in (70) of the agent’s sell LOs as a function of
time for different values of the inventory. The parameters of the left panel
are t = 0.8 minutes, T = 1 minute, κ = 100, α = 10−4, and Q0 = 5. The
parameters of the right panel are t = 0.8 minutes, T = 1 minute, λ = 50,
α = 10−4, and Q0 = 5.
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10 Optimal market making

Most electronic exchanges clear the demand and supply of liquidity in
LOBs, where a large panel of market participants such as institutional or
individual investors, dealers, brokers, and arbitrageurs can interact. Alterna-
tively, OTC markets are off-exchange “quote-driven” markets that are based
on a network of market makers that set prices at which liquidity takers can
trade. To set prices, liquidity providers in OTC markets constantly stream
bid and ask quotes at which they are ready to immediately trade, or they
respond to requests made by their clients; the so-called RFQs (Request For
Quote).14

OTC market makers faces a complex problem. They provide bid and ask
quotes for various assets that exhibit complex joint dynamics without seeing
the full depth of price and clients. Consequently, it is key to properly account
for risks at the portfolio level. However, a large proportion of multi-asset
market making models in the literature only consider correlated Brownian
dynamics. Additionally, multi-asset market making is challenging due to high
dimensionality and the resulting numerical challenges to obtain the optimal
quotes.

To derive the optimal bid and ask quotes that they provide to market par-
ticipants, market makers solve utility maximisation problem. The first works
to tackle this problem mathematically are in Ho and Stoll (1981) and Ho and
Stoll (1983) where the authors derive a quoting strategy in a multi-period
sequential bidding setup. Shortly after, the work in Glosten and Milgrom
(1985) analyses the market maker’s decision problem within a model with
informed and uninformed traders, giving rise to numerous models that op-
pose insiders and liquidity consumers who interact through a market maker
that sets prices. The literature has later been revived after the seminal work
in Avellaneda and Stoikov (2008) who considered a market with a reference
price in the form of a Brownian motion, and modelled the number of orders
at the bid and the ask as a counting process whose intensity depends on the
distance of the quotes from the reference price. Although the work in Avel-
laneda and Stoikov (2008) and its extensions were intended to solve optimal
market making within an LOB, the approach is better suited for an OTC
market maker that receives RFQs, unless the quoted spreads in the LOB are

14For a better understanding of how the system of RFQs operates, we refer the interested reader to
Fermanian et al. (2016).
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large in terms of the tick size.

This section deals with the optimal trading problem faced by a market
maker who proposes liquidity for an asset in an OTC market by continuously
streaming bid and ask quotes at which they are ready to buy or sell the
asset.15

10.1 Modelling framework

Consider a filtered probability space
(
Ω,F ,P;F = (Ft)t∈[0,T ]

)
, with T > 0,

satisfying the usual conditions and supporting all the processes we introduce
below.

A market maker operates in an OTC market for a trading period [0, T ]
(usually one trading day) and is in charge of a single asset whose midprice is
modelled by the process (St)t∈[0,T ] which follows the dynamics

dSt = σ dWt , S0 ∈ R+ is known,

where W is a standard Brownian motion.

The market maker chooses the bid price Sb
t = St − δbt and the ask price

Sa
t = St+ δat that they stream to their clients and at which they are ready to

immediately fill a trade. The control variables of the agent are the distances
δb and δa which determine the price of liquidity; the larger these values, the
more expensive it is for the market maker’s clients to buy and sell the security.

To model the arrival of buy orders at the ask and sell orders at the bid,

we use two counting (controlled) processes
(
N b,δ

t

)
and

(
Na,δ

t

)
to model the

number of sell orders and buy orders, respectively, that the market maker
fills and which arrive at Poisson times with intensities Λb(δb) and Λa(δa),
respectively. The intensity functions Λb and Λa are decreasing in δb and
δa, respectively; the more the liquidity proposed by the market maker is
expensive, the fewer orders they will receive.

The inventory of the market maker is modelled by the process
(
Qδ

t

)
. When

the market maker receives a buy (sell) order at the proposed ask price (bid
price), the inventory decreases (increases) by one unit of the security. Thus,

15A slight modification of the model that we study here can also be used for a market maker who posts
LOs on both sides of the of the midprice in a limit order book.
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the dynamics of the inventory are

dQδ
t = dN δ,b

t − dN δ,a
t , Qδ

0 = 0.

The cash of the market maker is modelled by the process
(
Xδ

t

)
. When the

market maker receives a buy order at the ask price, the cash increases by
St+δ

a
t per share sold by the market maker. When the market maker receives

a sell order at the bid price, the cash decreases by St − δbt per share bought
by the market maker. Thus, the dynamics of the market maker’s cash are

dXδ
t = −

(
St − δbt

)
dN δ,b

t +
(
St + δbt

)
dN δ,a

t , Xδ
0 = X0 ∈ R know. (71)

In this section and similar to Section 9, we consider the following exponen-
tial intensity functions : {

Λb(δb) = λb e−κb δb

Λa(δa) = λa e−κa δa ,

where (λb, λa) represent a baseline intensity of order arrival when the price
of liquidity is zero, and (κb, κa) are the rates of decay of the sell and buy
pressure, respectively, as a function of the price of liquidity.

Finally, we also assume that the market maker manages inventory risk by
choosing caps on how long or short their position is in the security. Thus
the market maker chooses boundaries q < 0 and q > 0 such that they stop
filling trades whenever the inventory satisfies Q /∈ [q, q]; the inventory and
the boundaries are integers that represent a number of shares. To model this
aspect, we modify the intensity functions above and we set{

Λb(δb) = λb e−κb δb 1q<q

Λa(δa) = λa e−κa δa 1q>q ,
(72)

where 1 is the indicator function. Mathematically, the intensity functions
(72) imply that orders (artificially) stop coming once the inventory of the
market maker hits one of the boundaries. In practice, this can be achieved
by quoting a very large price at the bid or the ask to discourage clients from
trading.
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10.2 Performance criterion

The market makers seeks a strategy δ =
(
δb, δa

)
that maximises the termi-

nal wealth. We also assume that by the terminal time T , the market maker
wishes to get rid of any remaining inventory Qδ

T by using an MI at a price
which is worse that the midprice ST . Finally, the market maker also includes
a running inventory penalty that penalises holding large positions throughout
the trading period.

The performance criterion is

Hδ(t, x, S, q) = Et,x,q,S

[
XT +Qδ

T (S
δ
T − αQδ

T )− ϕ

∫ T

t

(Qu)
2du

]
,

where α ≥ 0 models the terminal penalty from liquidating the remaining
inventory, ϕ ≥ 0 scales the quadratic running inventory penalty. The value
function of the market maker is

H(t, x, S, q) = sup
δ∈A

Hδ(t, x, S, q),

where A is the set of admissible F−predictable processes that are bounded
from below.

10.3 Solution with no inventory penalty

Here we consider the simple case when the agent does not penalise holding
inventory, so they set the penalty parameters ϕ = α = 0 and q = −q = ∞. To
solve our problem, we note that the dynamic programming principle suggests
that the value function solves the DPE

0 = ∂tH(t, x, q, S) +
1

2
σ2 ∂SSH(t, x, q, S) (73)

+ λa sup
δa

{
e−κa δa (H(t, x+ (S + δa), q − 1, S)−H(t, x, q, S))

}
1q>q

+ λb sup
δb

{
e−κb δb

(
H
(
t, x− (S − δb), q + 1, S

)
−H(t, x, q, S)

)}
1q<q̄,

subject to the terminal condition

H(T, x, S, q) = x+ q S,
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The terms in the DPE (73) represent various components in the value of
the agent’s utility: (i) the change in the value function due to the arrival of
orders that are filled by the market maker, and (ii) the change in the value
function due to the diffusion of the asset price.

To solve the DPE (73), we proceed as in the previous sections, i.e., we
propose ansatzs that simplify the equation or reduce its dimensionality, based
on the form of the equation and its terminal condition. The first and usual
ansatz is based on the form of the terminal condition, and allows to reduce
the dimensionality from 4 to 2 and we write

H(t, x, q, S) = x+ q S + h(t, q), (74)

which represent the accumulated cash x, the marked-to-market value of the
agent’s inventory q S, and the added value from following the optimal market
making strategy h(t, q).

Substitute (74) into (73) to obtain the following equation in h(t, q) :

0 = ∂th(t, q) + λa sup
δa

{
e−κaδa (δa + h(t, q − 1)− h(t, q))

}
(75)

+ λb sup
δb

{
e−κbδb

(
δb + h(t, q + 1)− h(t, q)

)}
,

subject to the terminal condition

h(T, q) = 0.

Now, notice that there are no terms in (75) that depend on the inventory
q and neither does the terminal condition. Thus, h does not depend on
the inventory and we write h(t, q) = h(t). This aspect is expected because
the market maker does not penalise holding inventory and only maximises
wealth, so the value function only depends on the inventory through the
marked-to-market value of the wealth x+ q S. Equation (75) simplifies to

0 = ∂th(t, q) + λa sup
δa

{
δa e−κaδa

}
+ λb sup

δb

{
δb e−κbδb

}
, (76)

subject to the terminal condition

h(T, q) = 0.
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Solving the supremum terms in (76) allows one to obtain the optimal feed-
back distances δb,⋆ and δa,⋆:

δb,∗ =
1

κb
and δa,∗ =

1

κa
.

The optimal strategy corresponds to proposing a constant bid and an ask
quotes. The values (1/κb, 1/κa) optimise the instantaneous expected profit
from a roundtrip trade; i.e., a simultaneous order filled at the bid and the
ask by the market maker. To see this, note that the expected profit (see the
dynamics in (71)) from a roundtrip trade is δbΛb(δb) + δaΛa(δa) which is
maximal for δb = 1/κ and δa = 1/κ , where Λb( · ) and Λa( · ) are given by
(72).

The models of optimal market making in the literature usually lead to
strategies that attempt to improve on the baseline strategy (77) by taking
into account additional aspects of the problem as in the next subsection which
incorporates inventory penalisation.

10.4 Solution to the general problem

To solve our problem, we note that the dynamic programming principle
gives the HJB

0 = ∂tH(t, x, q, S) +
1

2
σ2 ∂SSH(t, x, q, S)− ϕ q2

+ λa sup
δa

{
e−κa δa (H(t, x+ (S + δa), q − 1, S)−H(t, x, q, S))

}
1q>q

+ λb sup
δb

{
e−κb δb

(
H
(
t, x− (S − δb), q + 1, S

)
−H(t, x, q, S)

)}
1q<q̄,

(78a)

subject to the terminal condition

H(T, x, S, q) = x+ q S − α q2.
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The terms in the DPE (78a) represent (i) the change in the value function
due to the arrival of orders that are filled by the market maker if the inventory
is within the range [q, q], (ii) the change in the value function due to the
diffusion of the asset price, and (iii) finally the change in the value function
due to the effect of penalising deviations of inventories from zero along the
path of the trading strategy δ.

To solve the DPE (78a), we propose the usual ansatz

H(t, x, q, S) = x+ q S + h(t, q), (79)

which represent the accumulated cash x, the marked-to-market value of the
agent’s inventory q S, and the added value from following the optimal market
making strategy h(t, q).

Substitute (79) into (78a) to obtain the following equation in h(t, q) :

0 = ∂th(t, q)− ϕq2 + λa sup
δa

{
e−κaδa (δa + h(t, q − 1)− h(t, q))

}
1q>q

+ λb sup
δb

{
e−κbδb

(
δb + h(t, q + 1)− h(t, q)

)}
1q<q,

subject to the terminal condition

h(T, q) = −α q2.

Solving the supremum terms in (80) allows one to obtain the optimal feed-
back distances δb,⋆ and δa,⋆:

δb,∗(t, q) =
1

κb
− h(t, q + 1) + h(t, q), q < q,

δa,∗(t, q) =
1

κa
− h(t, q − 1) + h(t, q), q > q.

The optimal feedback distances can be decomposed into a first component
1/κa,b and a second component related to a change in the value function due to
an inventory change after a trade is filled. The first component is the optimal
strategy of a market maker who does not penalise inventory; see Subsection
10.3. The second term in both δb,∗(t, q) and δa,∗(t, q) corresponds to inventory
through time. We study how this component impacts the optimal strategy
in Subsection 10.5.
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Next, substitute the optimal feedback strategy (81) into (80) and obtain
the DPE

ϕq2 = ∂th(t, q) +
e−1λa

κa
exp{−κa(−h(t, q − 1) + h(t, q)}1q>q

+
e−1λb

κb
exp{−κb(−h(t, q + 1) + h(t, q))}1q<q,

(82a)

subject to the same terminal condition.

The work in Avellaneda and Stoikov (2008) was the first to find an analyt-
ical solution to the DPE (82a) when the intensity functions Λb and Λa decay
at the same rate κ = κa = κb. In that case, we propose the following ansatz

h(t, q) =
1

κ
logω(t, q),

which simplifies the DPE to

0 =∂tω(t, q)− ϕκ q2 ω(t, q) (83)

+ e−1λa ω (t, q − 1) 1q>q + e−1λb ω (t, q + 1) 1q<q,

subject to the terminal condition

ω(T, q) = exp(−κα q2).

Equation (83) corresponds to a system of ODEs. To see this, recall that the
inventory q can only take the finitely many values {q, q+1, . . . , q−1, q}, thus
for a fixed time t, ω(t, q) can only take the finitely many value {ω(t, q), ω(t, q+
1), . . . , ω(t, q − 1), ω(t, q)}.

For each time t, we define the vector

w(t) =
(
ω(t, q), ω(t, q + 1), . . . , ω(t, q − 1), ω(t, q)

)⊺
,

and note that the DPE (83) implies that w solves the ODE

0 = ∂tw(t) +Aω(t), (84)

93



where A is an q− q+1−square matrix, i.e., A ∈ Mq−q+1 (R) matrix, and we
write

Aq,i =


−ϕκ q2, i = q,
λa e−1, i = q − 1,
λb e−1, i = q + 1,
0, otherwise,

The solution to the first-order homogeneous matrix ODE (84) is straight-
forward and we obtain

w(t) = exp (A (T − t)) z,

where the vector z is (q − q + 1)−dimensional is defined as

z =
(
e−ακ q2, . . . , e−ακ q2

)⊺
.

10.5 Simulations

Here, we study how the quotes depend on model parameters. Figure 23
shows the optimal quotes at time t = 0 for various values of the parameters.
Each column of panels in Figure 23 fixes all parameters but one to some
default values and we set T = 30 minutes and α = 10−4. Each couple of
panels of each column in Figure 23 shows the optimal bid and sell distances,
respectively; recall that the quoted price for sell orders is St − δb,⋆ and the
quoted price for buy orders is St + δb,⋆.
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Figure 23: Optimal distances δb,
⋆

and δa,
⋆

in (81) as a function of model
parameters for different values of the inventory. The default parameters are
λ = 50, T = 1 minute, ϕ = 2 × 10−3, κ = 100, and Q0 = 5. The terminal
time is T = 30 minutes and the terminal penalty is α = 10−4.

The first column in Figure 23 shows that the market maker skews the price
of liquidity as a function of the inventory. When the position is long (Q > 0),
the sell price increases and the buy price decreases. This is to attract buyers
and discourage sellers so the inventory is pushed back to zero. Similarly,
when the market maker is short the security (Q < 0), the sell price decreases
and the buy price in crease. This is to attract sellers and discourage buyers.

The second column shows that the price of both sell and buy orders de-
creases when the decay parameter κ decreases. Recall that κ represents the
decay in probability of receiving orders when the price of liquidity increases.
Thus, κ quantifies the sensitivity of traders to the price of liquidity. The
more sensitive the traders, the less expensive the quotes.

The third columns studies the quotes as a function of the magnitude of the
running inventory penalty ϕ. When the agent is long the security (Q > 0),
increasing the inventory penalty forces the agent to revert their inventory
faster to zero by attracting buyers and and discouraging sellers (increasing
sell price and decreasing buy price). When the agent is short the security
(Q < 0), increasing the inventory penalty forces the agent to revert their
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inventory faster to zero by attracting sellers and and discouraging buyers.
This effect is stronger for larger long or short positions. Finally, the last
columns shows that the intensity of order arrival plays a second-order role in
the optimal strategy.

10.6 Further readings

The model in Avellaneda and Stoikov (2008) gave rise to an extensive lit-
erature on optimal market making. Guéant et al. (2013) provide a rigorous
analysis of the problem, for which they consider the exponential intensity
functions suggested in Avellaneda and Stoikov (2008). The authors use the
tools of stochastic optimal control to prove that the problem reduces to a
system of linear ODEs under inventory constraints. They also analyse the
asymptotic regime of the optimal quotes when the time horizon T tends
to +∞, and propose closed-form approximations using results from spectral
analysis. In addition, Cartea and his co-authors also study optimal market
making models. Cartea et al. (2015) use stochastic control tools to rigorously
characterise the optimal market making strategy that uses an objective func-
tion given by the expectation of the P&L minus a running penalty. Cartea
et al. (2017) study the ambiguity in the specification of fill probabilities and
the dynamics of intensities and prices. Finally, Cartea and Wang (2020)
incorporate signals in the market making strategy.

More recently, other features have also been considered in the literature,
such as general intensity shapes depending on unobservable factors in Campi
and Zabaljauregui (2020), persistence in the order flow in Jusselin (2021),
variability in the request sizes in Bergault and Guéant (2021), and client
tiering and access to liquidity pools in Barzykin et al. (2021). The case of
options market making is studied in the literature starting with Stoikov and
Sağlam (2009) where the authors use a mean-variance framework. In El Aoud
and Abergel (2015), the authors extend the problem by considering a stochas-
tic volatility model for prices. Finally, Guilbaud and Pham (2013) propose a
framework for studying optimal market making policies in a limit order book
where the bid-ask spread follows a Markov chain with finitely many values
and an agent sends market and limit orders to maximise their expected util-
ity. The problem is solved using a mixed regime switching regular / impulse
control problem.
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11 Optimal portfolio trading

In practice, operators routinely face the problem of having to execute si-
multaneously large orders regarding various assets, such as in block trading
for funds facing large subscriptions or withdrawals, or when considering multi-
asset trades in statistical arbitrage trading strategies. More generally, banks
and market makers manage their (il)liquidity and market risk, when it comes
to executing trades, in the context of a central risk book; hence the need for
multi-asset models. This section considers a generalisation of the model of
Section 5 where the agent is in charge of executing large positions in multiple
assets simultaneously and they adopt a CARA utility.

11.1 Modelling framework

Consider a filtered probability space
(
Ω,F ,P;F = (Ft)t∈[0,T ]

)
, with T > 0,

satisfying the usual conditions. We assume this probability space to be large
enough to support all the processes we introduce.

We consider a market with d ∈ N∗ assets,16 and an agent that liquidates
their holdings in a portfolio over a trading window [0, T ]. Let Q0 ∈ Rd

be the initial holdings of the agent in every asset. The inventory process
(Qt)t∈[0,T ] =

(
Q1

t , . . . , Q
d
t

)⊺
t∈[0,T ] of the agent evolves with the trading speed

(vt)t∈[0,T ] = (v1t , . . . , v
d
t )

⊺
t∈[0,T ] for each asset, and we write17

dQt = vtdt. (85)

We consider in this section the problem of multi-asset optimal execution
in the case where prices are correlated arithmetic Brownian motions. The
prices (St)t∈[0,T ] =

(
S1
t , . . . , S

d
t

)⊺
t∈[0,T ] of the d assets follow the dynamics

dSt = V dWt , (86)

with S0 ∈ Rd known, the matrix V ∈ Md(R) captures the covariance and we
define the covariation matrix Σ = V V ⊺, and (Wt)t∈[0,T ] =

(
W 1

t , . . . ,W
d
t

)⊺
t∈[0,T ]

is a d-dimensional standard Brownian motion with independent coordinates.18

16We denote by N∗ the set N∗ := N\{0} of positive integers.
17The superscript ⊺ designates the transpose operator. It transforms here a line vector into a column

vector.
18We denote by Md,k(R) the set of d × k real matrices and by Md(R) := Md,d(R) the set of d × d real

square matrices. The set of real symmetric d× d matrices is denoted by Sd(R).
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Here, we consider that the temporary price impact and/or the execution
costs of the agent’s trading activity have a positive-definite quadratic form.
Thus, the value (Xt)t∈[0,T ] of the agent’s cash account throughout the trading
window follows the dynamics

dXt = −v⊺t Stdt− v⊺t η vt dt, (87)

where the initial cash X0 ∈ R is known, and η ∈ S++
d (R) is the temporary

market impact matrix.19

Market impact is also permanentand the impacted price process (S̃t)t∈[0,T ] =(
S̃1
t , . . . , S̃

d
t

)⊺
t∈[0,T ]

follows the dynamics:

dS̃t = dSt +Kvtdt,

where K ∈ Sd(R) is the matrix that quantifies the linear permanent impact of
the agent’s trading activity on the prices. In the case of the CARA utility and
Brownian dynamics, Schied et al. (2010) prove that one can reduce the set of
admissible strategies to that of absolutely continuous deterministic execution
strategies. In particular, the linear permanent price impact does not play a
role in the optimisation problem. In the remainder of this section, we do not
take permanent price impact into account. We prove this result in Section
12.

11.2 Performance criterion

The terminal wealth of the agent is the sum of the terminal cash XT and
the value of any outstanding terminal inventory QT valued at the terminal
price ST . As usual, we add a penalisation term in the objective function. The
penalisation term acts as a discount applied to the Marked-to-Market value
Q⊺

TST of the remaining assets and penalises any non-zero terminal position.
We assume that the terminal penalty takes a positive-definite quadratic form.
Thus, we value the terminal inventory QT of the agent at Q⊺

TST − Q⊺
TΓQT

where Γ ∈ S++
d (R). The agent maximises the CARA performance criterion

wν(t, x, q, s) = Et,x,q,s [− exp (−γ (XT +Q⊺
T ST −Q⊺

T ΓQT ))] , (88)

19The subset of positive-definite and positive semi-definite matrices of Sd(R) are respectively denoted by
S++
d (R) and S+

d (R).
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where γ > 0 is the absolute risk aversion parameter of the agent. The value
function is

w(t, x, q, s) = sup
ν∈A

wν(t, x, q, s).

11.3 Solution

Use the dynamics in (85)-(86)-(87) to write the HJB equation associated
with the problem (88) is

0 = ∂tw +
1

2
Tr
(
ΣD2

SSw
)

+ sup
v∈Rd

(−(v⊺s+ v⊺ηv)∂xw + v⊺∇qw) ,

for all (t, x, q, s) ∈ [0, T )× R × Rd × Rd with terminal condition

w(T, x, q, s) = − exp (−γ (x+ q⊺s− q⊺Γq)) ∀(x, q, s) ∈ R × Rd × Rd.

The terminal condition suggests the ansatz which splits out the accumu-
lated cash, the book value of the shares which are marked-to-market at the
midprice, and the added value θ from trading optimally:

w(t, x, q, s) = − exp (−γ (x+ q⊺S + θ(t, q))) ,
∀(t, x, q, s) ∈ [0, T ]× R × Rd × Rd,

to obtain the new HJB in θ

0 = ∂tθ(t, q) + sup
v∈Rd

(v⊺∇qθ(t, q)− v⊺ηv)− γ

2
q⊺Σq, (90)

with terminal condition

θ(T, q) = −q⊺Γq ∀q ∈ Rd.

The supremum in (90) is reached with the optimal control in feedback form

v∗s =
1

2
η−1∇qθ(s, q) ,

for all s ∈ [t, T ]. Consequently, we obtain the HJB

0 = ∂tθ(t, q) +
1

4
∇qθ(t, q)

⊺η−1∇qθ(t, q)−
γ

2
q⊺Σq ,
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with terminal condition

θ(T, q) = −q⊺Γq, ∀q ∈ Rd.

We use the second ansatz

θ(t, q) = Q⊺A(t)q +B(t)⊺q + C(t) ,

for all (t, q) ∈ [0, T ] × Rd , and find that the problem reduces to finding
A ∈ C1 ([0, T ],Sd(R)), B ∈ C1

(
[0, T ],Rd

)
and C ∈ C1 ([0, T ],R) that solve

the following ODE system
A′(t) = γ

2Σ− A(t)η−1A(t)

B′(t) = −A(t)η−1B(t)

C ′(t) = −1
4B(t)⊺η−1B(t),

with terminal conditions

A(T ) = −Γ, B(T ) = C(T ) = 0.

The solutions for B and C are B = C = 0. Therefore, the problem
reduces to finding A ∈ C1 ([0, T ],Sd(R)) solution of the following terminal
value problem: {

A′(t) = γ
2Σ− A(t)η−1A(t)

A(T ) = −Γ.
(91)

We show that when Σ ∈ S++
d (R), A can be found in closed-form. We

introduce the change of variables

a(t) = η−
1
2A(t)η−

1
2 ∀t ∈ [0, T ] ,

and notice that (91) is equivalent to the terminal value problem{
a′(t) = Â2 − a(t)2

a(T ) = −C,
(92)

where

Â =

√
γ

2

(
η−

1
2Ση−

1
2

) 1
2 ∈ S++

d (R) ,
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and
C = η−

1
2Γη−

1
2 ∈ S+

d (R) .

To solve (92) we use a classical trick for Riccati equations in the next result.

Proposition 3. Let ξ : [0, T ] → Sd(R) defined as

ξ (t) = −Â
−1

2

(
I − e−2Â(T−t)

)
− e−Â(T−t)

(
C + Â

)−1

e−Â(T−t) (93)

be the unique solution of the linear ODEξ
′(t) = Âξ(t) + ξ(t)Â+ Id

ξ(T ) = −
(
C + Â

)−1

.
(94)

Then ∀t ∈ [0, T ], ξ(t) is invertible and

a : t ∈ [0, T ] → Â+ ξ(t)−1 ∈ Sd(R)

is the unique solution of (92).

Proof. First, we verify that ξ, defined in (93), is the solution of the linear
ODE (94). Next, for all t ∈ [0, T ], −ξ(t) is the sum of

Â−1

2

(
I − e−2Â(T−t)

)
∈ S+

d (R)

and

e−Â(T−t)
(
C + Â

)−1

e−Â(T−t) ∈ S++
d (R) ,

so −ξ(t) ∈ S++
d (R) and ξ(t) is invertible. We also note that

a′(t) = −ξ(t)−1ξ′(t)ξ(t)−1

= −ξ(t)−1Â− Âξ(t)−1 − ξ(t)−2

= Â2 −
(
Â+ ξ(t)−1

)2
= Â2 − a(t)2 ,

and a(T ) = −C, hence the result.

We deduce the following corollary:
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Corollary 1. ∀t ∈ [0, T ],

A(t) = η
1
2

Â−

(
Â−1

2

(
I − e−2Â(T−t)

)
+ e−Â(T−t)

(
C + Â

)−1

e−Â(T−t)

)−1
 η

1
2 .

(95)

The problem admits a classical solution. The results in Section 12 apply
to this problem (when R = 0) and rigorously characterise the strategy. In
particular,

w(t, x, q, s) = − exp (−γ (x+ q⊺s+ q⊺A(t)q)) ,

where A is in (95), is the value function associated with the optimisation
problem, and the optimal trading speed is

v∗s = η−1q⊺sA (s) .

11.4 Further readings

In contrast to the single-asset case, the existing literature on the joint exe-
cution of large orders in multiple assets, or a single asset within a multi-asset
portfolio, is limited. The first paper to build multi-asset trading curves in
an optimised way is Almgren and Chriss (2001). Almgren and Chriss consid-
ered, in an appendix of their seminal paper, a multi-asset extension of their
discrete-time model. A few extensions to this model have been proposed
in the literature. Lehalle (2009) considers adding an inventory constraint
to balance the different portfolio lines during the portfolio execution pro-
cess. Schied et al. (2010) show that when prices follow Bachelier dynamics,
deterministic strategies are optimal for a trader with an exponential utility
objective function. Cartea et al. (2015) use stochastic control tools to derive
multi-asset optimal execution strategies such as optimal entry/exit times and
cointegration-based statistical arbitrage. Bismuth et al. (2019) address opti-
mal portfolio liquidation (along with other problems) by coupling Bayesian
learning and stochastic control to derive optimal strategies under uncertainty
on model parameters in the Almgren-Chriss framework. Emschwiller et al.
(2021) extend optimal trading with Markovian predictors to the multi-asset
case, with linear trading costs, using a mean-field approach that reduces the
problem to a single-asset one.
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12 Optimal trading of cointegrated assets

In practice, market operators such as brokers or mutual funds are in charge
of assets from a specific sector or asset class. Thus, the asset prices usually
share common stochastic trends and exhibit co-movements. For example, in
equity markets, a large number of shares from a specific economic sector have
cointegrated dynamics as they share common sources of systemic risk. Often,
when trading these assets simultaneously, price movements of a single asset
that are adverse when considered independently can become profitable in the
portfolio case. Operators need to account for the joint dynamics that assets
exhibit.

Most existing papers consider correlated Brownian motions when mod-
elling the joint dynamics of prices. The problem of using single-asset models
or unsuitable multivariate models for portfolio trading is that the resulting
trading curves of individual assets do not balance well execution costs and
price impact with price risk at the portfolio or strategy level.

A classical model for the multivariate dynamics of financial variables that
goes beyond that of correlated Brownian motions is the multivariate Ornstein-
Uhlenbeck (multi-OU) model. It is especially attractive because it is parsimo-
nious, and yet general enough to cover a wide spectrum of multi-dimensional
dynamics; particular cases include correlated Brownian motions but also coin-
tegrated dynamics which are heavily used in statistical arbitrage. Multi-OU
dynamics account for the information in the prices of all assets when trad-
ing individual assets. This information enhances the trading performance of
execution programmes and can serve as a basis to execute statistical arbi-
trages.20

The advantages of multi-OU dynamics for practitioners are numerous.
Considering single-asset execution within a portfolio allows to manage risk
across a basket of assets. Agents can hold securities on their balance sheets for
longer, reducing market impact and execution costs. Moreover, from a reg-
ulation point of view, multivariate optimal execution models that naturally
offset risks in a portfolio are of great interest. The new FRTB (Fundamen-
tal Review of the Trading Book) regulation will lead practitioners to assess
liquidity risks within a centralised risk book for capital requirements. In this

20When trading an asset, the dynamics of another asset can be regarded as a predictive signal that can
enhance the execution process. Thus, the litearture on predictive signals in the optimal execution is closely
related to the topic of multi-asset optimal execution with multi-OU dynamics.
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context, our model can reduce the liquidity risk of the execution process by
taking into account the joint dynamics of the assets.

The work in Cartea et al. (2018c) is the pioneering work in the use of the
multi-OU model for the price dynamics in a multi-asset optimal execution
problem. The authors proposed a model where the asset prices have multi-
OU dynamics and the agent maximises an objective function given by the
expectation of the Profit and Loss (PnL) minus a running penalty related to
the instantaneous variance of the portfolio.

This section solves a multi-asset optimal execution problem when the agent
adopts a CARA utility and the prices follow multi-OU dynamics which ac-
count for the presence of cointegration between the assets’ prices. We show-
case the use of the model to enhance the performance of portfolio execution
programmes and to build statistical arbitrage strategies using real data from
the Equity and FX markets.

12.1 Modelling framework

We consider a filtered probability space
(
Ω,F ,P;F = (Ft)t∈[0,T ]

)
satisfying

the usual conditions. We assume this probability space to be large enough
to support all the processes we introduce.

We consider a market with d ∈ N⋆ assets, and a trader wishing to liquidate
their portfolio over a period of time [0, T ], with T > 0. their inventory process
(Qt)t∈[0,T ] =

(
Q1

t , . . . , Q
d
t

)⊺
t∈[0,T ] evolves as

dQt = vtdt, (96)

withQ0 ∈ Rd given, where (vt)t∈[0,T ] = (v1t , . . . , v
d
t )

⊺
t∈[0,T ] represents the trading

rate of the trader for each asset.

The fundamental prices of the d assets are modelled as a d-dimensional
Ornstein-Uhlenbeck process (St)t∈[0,T ] =

(
S1
t , . . . , S

d
t

)⊺
t∈[0,T ] with dynamics

dSt = R(S − St)dt+ V dWt, (97)

and we introduce the market price process (S̃t)t∈[0,T ] =
(
S̃1
t , . . . , S̃

d
t

)⊺
t∈[0,T ]

with dynamics:
dS̃t = dSt +K vtdt,
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with S0 = S̃0 ∈ Rd given, where S ∈ Rd, R ∈ Md(R), V ∈ Md,k(R),
K ∈ Sd(R), and (Wt)t∈[0,T ] =

(
W 1

t , . . . ,W
k
t

)⊺
t∈[0,T ] is a k-dimensional stan-

dard Brownian motion (with independent coordinates) for some k ∈ N∗. In
these dynamics, the matrix R steers the deterministic part of the process, S
represents the unconditional long-term expectation of (St)t∈[0,T ], and V drives
the dispersion (for what follows, we introduce Σ = V V ⊺ the covariation ma-
trix of the process). The matrix K represents the linear permanent impact
the agent has on the prices.21 More precisely, since

dS̃t = dSt +Kvtdt =R(S − St)dt+Kvtdt+ V dWt

=R(S +K(Qt −Q0)− S̃t)dt+Kvtdt+ V dWt,

trading impacts both current market prices and long-term expectations.

Ornstein-Uhlenbeck processes are well suited when prices exhibit mean
reversion and/or when there exist one or several linear combinations of asset
prices that are stationary. In the latter case, we say that the assets involved
in the linear combinations are cointegrated (a situation often encountered in
statistical arbitrage). For more details on cointegration in continuous time,
we refer to Comte (1999).

Finally, the process (X̃t)t∈[0,T ] modelling the trader’s cash account has the
dynamics

dX̃t = −v⊺t S̃tdt− L(vt)dt,

with X̃0 ∈ R given, where L : Rd → R+ is a function representing the tem-
porary market impact of trades and/or the execution costs incurred by the
trader. We assume that L is a positive-definite quadratic form, i.e.22

L(v) = v⊺ηv with η ∈ S++
d (R).

12.2 Performance criterion

The trader seeks to maximise the expected utility of their wealth at the end
of the trading window [0, T ]. This wealth is the sum of the amount X̃T on the
cash account at time T and the value of the remaining inventory evaluated
here at Q⊺

T S̃T− ℓ̃(QT ), where the discount term ℓ̃(QT ) applied to the Mark-to-

Market (MtM) value of the remaining assets (Q⊺
T S̃T ) penalises any non-zero

21It is assumed symmetric to avoid price manipulation.
22The subset of positive-definite and positive semi-definite matrices of Sd(R) are respectively denoted by

S++
d (R) and S+

d (R).
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terminal position. We assume that ℓ̃ is a positive-definite quadratic form, i.e.
ℓ̃(q) = q⊺Γ̃q with Γ̃ ∈ S++

d (R) (see below for a stronger assumption on Γ̃).

To define the set of admissible controls A, we first introduce a notion of
“linear growth” relevant in our context. These technical considerations are
beyond the scope of this course, but they are necessary to obtain a rigorous
solution to the problem.

Definition 1. Let t ∈ [0, T ]. An Rd-valued, F-adapted process (ζu)u∈[t,T ] is
said to satisfy a linear growth condition on [t, T ] with respect to (Su)u∈[t,T ] if
there exists a constant Ct,T > 0 such that for all u ∈ [t, T ],

∥ζs∥ ≤ Ct,T

(
1 + sup

τ∈[t,u]
∥Sτ∥

)

almost surely.23

We then define for all t ∈ [0, T ]:

At =

{
(vu)u∈[t,T ], Rd-valued, F-adapted, satisfying

a linear growth condition with respect to (Su)u∈[t,T ]

}
,

and take A := A0.
24

Mathematically, the trader seeks to solve the dynamic optimisation prob-
lem

sup
v∈A

E
[
− exp

(
−γ
(
X̃T +Q⊺

T S̃T − ℓ̃(QT )
))]

, (98)

where γ > 0 is the absolute risk aversion parameter of the trader.

12.3 An equivalent problem

Note that

X̃T +Q⊺
T S̃T − ℓ̃(QT ) = X̃0 +Q⊺

0S̃0 +

∫ T

0

Q⊺
t dS̃t −

∫ T

0

L(vt)dt− ℓ̃(QT )

23In this section, ∥.∥ denotes a fixed norm on Rd (for instance, the Euclidean norm).
24We restrict our analysis to linear growth strategies for mathematical convenience, but we expect the

candidate control to be optimal among a larger class of processes.
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= X0 +Q⊺
0S0 +

∫ T

0

Q⊺
t dSt +

∫ T

0

Q⊺
tKvtdt

−
∫ T

0

L(vt)dt− ℓ̃(QT )

= XT +Q⊺
TST − ℓ̃(QT ) +

1

2
Q⊺

TKQT − 1

2
Q⊺

0KQ0,

where X0 = X̃0 and the process (Xt)t∈[0,T ] has dynamics

dXt = −v⊺t Stdt− L(vt)dt. (99)

Let us now define the penalty function ℓ : Rd → R by:

ℓ(q) = ℓ̃(q)− 1

2
q⊺Kq = q⊺Γ̃q − 1

2
q⊺Kq ∀q ∈ Rd.

In what follows, we assume that ℓ is a positive semi-definite quadratic form,
i.e. Γ = Γ̃− 1

2K ∈ S+
d (R).

Remark 1. The assumption on Γ̃ is not restrictive as in practice, Γ̃ (and
therefore Γ) is chosen arbitrarily large to enforce liquidation.

It is then straightforward to see that Problem (98) is equivalent to the
following problem:

sup
v∈A

Et,x,q,s [− exp (−γ (XT +Q⊺
TST − ℓ(QT )))] . (100)

The value function of the problem u : [0, T ]× R × Rd × Rd → R is

u(t, x, q, s) = sup
v∈At

Et,x,q,s [− exp (−γ (XT + (QT )
⊺ST − ℓ(QT )))] .

12.4 Solution

Use the dynamics (96)-(97)-(99) of the problem to write the HJB equation
associated with Problem (100) as25

0 = ∂tw + sup
v∈Rd

(−(v⊺S + L(v))∂xw + v⊺∇qw)

+ (S − S)⊺R⊺∇Sw +
1

2
Tr
(
ΣD2

SSw
)
, (101a)

25u will be solution to that equation, but as we do not know it yet, we write the equation with an unknown
function w.
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for all (t, x, q, s) ∈ [0, T )× R × Rd × Rd with the terminal condition

w(T, x, q, s) = − exp (−γ (x+ q⊺s− ℓ(q))) ∀(x, q, s) ∈ R × Rd × Rd.(102)

In order to study (101a), we use the following ansatz:

w(t, x, q, s) =− exp (−γ (x+ q⊺s+ θ(t, q, s))) ,

∀(t, x, q, s) ∈ [0, T ]× R × R2d.

(103a)

The interest of this ansatz is based on the following proposition:

Proposition 4. If there exists θ ∈ C1,1,2([0, T ]× Rd × Rd,R) solution to

0 = ∂tθ + sup
v∈Rd

(v⊺∇qθ − L(v)) +
1

2
Tr
(
ΣD2

SSθ
)

(104)

− γ

2
(q +∇Sθ)

⊺Σ(q +∇Sθ) + (S − S)⊺R⊺(∇Sθ + q)

on [0, T )× Rd × Rd, with terminal condition

θ(T, q, s) = −ℓ(q) ∀(q, s) ∈ Rd × Rd, (105)

then the function w defined by the ansatz (103a) is a solution to (101a) on
[0, T )× R × Rd × Rd with terminal condition (102).

Proof. Let θ ∈ C1,1,2([0, T ] × Rd × Rd,R) be a solution to (104) on [0, T ) ×
Rd × Rd with terminal condition (105), then we have for all (t, x, q, s) ∈
[0, T )× R × Rd × Rd:

∂tw + sup
v∈Rd

(−(v⊺S + L(v))∂xw + v⊺∇qw) + (S − S)⊺R⊺∇Sw +
1

2
Tr
(
ΣD2

SSw
)

= sup
v∈Rd

(γ(v⊺S + L(v))w − γv⊺(∇qθ + S)w) +
γ2

2
Tr (Σ(q +∇Sθ)(q +∇Sθ)

⊺w)

− γ∂tθ w − γ(S − S)⊺R⊺(∇Sθ + q)w − 1

2
Tr
(
γΣD2

SSθw
)

= − γw

(
∂tθ + sup

v∈Rd

(v⊺∇qθ − L(v)) +
1

2
Tr
(
ΣD2

SSθ
)

− γ

2
(q +∇Sθ)

⊺Σ(q +∇Sθ) + (S − S)⊺R⊺(∇Sθ + q)

)
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= 0.

As it is straightforward to verify that w satisfies the terminal condition (102),
the result is proved.

The above result does not use the quadratic assumptions for L and ℓ. In the
quadratic case we consider in this section, θ can be found in almost closed
form. To prove this point, the first thing to notice is that the Legendre-
Fenchel transform of L writes

H : p ∈ Rd 7→ sup
v∈Rd

v⊺p− L(v) = sup
v∈Rd

v⊺p− v⊺ηv =
1

4
p⊺η−1p,

as the supremum is reached at v∗ = 1
2η

−1p.

Consequently, we get the following HJB equation for θ:

0 =∂tθ +
1

4
∇qθ

⊺η−1∇qθ +
1

2
Tr
(
ΣD2

SSθ
)

− γ

2
(q +∇Sθ)

⊺Σ(q +∇Sθ) + (S − S)⊺R⊺(∇Sθ + q),

(106a)

with terminal condition

θ(T, q, s) = −q⊺Γq ∀(q, s) ∈ Rd × Rd. (107)

To further study (106a), we introduce a second ansatz and look for a
solution θ of the following form:

θ(t, q, s) = q⊺A(t)q + q⊺B(t)s+ s⊺C(t)s+D(t)⊺q + E(t)⊺s+ F (t) (108)

for all (t, q, s) ∈ [0, T ]× Rd × Rd , or equivalently

θ(t, q, s) =

(
q
s

)⊺

P (t)

(
q
s

)
+

(
D(t)
E(t)

)⊺(
q
s

)
+ F (t) ,

where P : [0, T ] → S2d(R) is defined as

P (t) =

(
A(t) 1

2B(t)
1
2B(t)⊺ C(t)

)
.

The interest of this ansatz is stated in the following proposition.
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Proposition 5. Assume there exist A ∈ C1 ([0, T ],Sd(R)), B ∈ C1 ([0, T ],Md(R)),
C ∈ C1 ([0, T ],Sd(R)), D ∈ C1

(
[0, T ],Rd

)
, E ∈ C1

(
[0, T ],Rd

)
, F ∈ C1 ([0, T ],R)

satisfying the system of ODEs

A′(t) = γ
2(B(t) + Id)Σ(B(t)⊺ + Id)− A(t)η−1A(t)

B′(t) = (B(t) + Id)R + 2γ(B(t) + Id)ΣC(t)− A(t)η−1B(t)

C ′(t) = R⊺C(t) + C(t)R + 2γC(t)ΣC(t)− 1
4B(t)⊺η−1B(t)

D′(t) = −(B(t) + Id)RS + γ(B(t) + Id)ΣE(t)− A(t)η−1D(t)

E ′(t) = −2C(t)RS +R⊺E(t) + 2γC(t)ΣE(t)− 1
2B(t)⊺η−1D(t)

F ′(t) = −S⊺
R⊺E(t)− Tr(ΣC(t)) + γ

2E(t)
⊺ΣE(t)− 1

4D(t)⊺η−1D(t),

(109)

where Id denotes the identity matrix in Md(R), with terminal conditions

A(T ) = −Γ, B(T ) = C(T ) = D(T ) = E(T ) = F (T ) = 0. (110)

Then θ defined by (108) satisfies (106a) on [τ, T )× Rd × Rd with terminal
condition (107).

Proof. LetA ∈ C1 ([τ, T ],Sd(R)), B ∈ C1 ([τ, T ],Md(R)), C ∈ C1 ([τ, T ],Sd(R)),
D ∈ C1

(
[τ, T ],Rd

)
, E ∈ C1

(
[τ, T ],Rd

)
, F ∈ C1 ([τ, T ],R) verify (109) on

[τ, T ) with terminal condition (110). Consider θ : [τ, T ] × Rd × Rd → R
defined by (108). Then we obtain for all (t, q, s) ∈ [τ, T )× Rd × Rd:

∂tθ +
1

4
∇qθ

⊺η−1∇qθ +
1

2
Tr
(
ΣD2

SSθ
)

− γ

2
(q +∇Sθ)

⊺Σ(q +∇Sθ) + (S − S)⊺R⊺(∇Sθ + q),

= q⊺A′(t)q + q⊺B′(t)S + S⊺C ′(t)S +D′(t)⊺q + E ′(t)⊺S + F ′(t)

+ q⊺A(t)η−1A(t)q + q⊺A(t)η−1B(t)S +
1

4
S⊺B(t)⊺η−1B(t)S

+D(t)⊺η−1A(t)q +
1

2
(D(t))⊺ η−1B(t)S +

1

4
D(t)⊺η−1D(t) + Tr(ΣC(t))

− γ

2
(q +B(t)⊺q + 2C(t)S + E(t))⊺Σ (q +B(t)⊺q + 2C(t)S + E(t))

+ S
⊺
R⊺q + S

⊺
R⊺ (B(t)⊺q + 2C(t)S + E(t))

− S⊺R⊺q − S⊺R⊺ (B(t)⊺q + 2C(t)S + E(t))

= q⊺
(
A′(t)− γ

2
(B(t) + Id)Σ(B(t)⊺ + Id) +

1

4
(2A(t)) η−1 (2A(t))

)
q
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+ q⊺
(
B′(t)− (Id +B(t))R− 2γ(B(t) + Id)ΣC(t) + A(t)η−1B(t)

)
S

+ S⊺

(
C ′(t)−R⊺C(t)− C(t)R− 2γC(t)ΣC(t) +

1

4
B(t)⊺η−1B(t)

)
S

+
(
D′(t) + (B(t) + Id)RS − γ(B(t) + Id)ΣE(t) + A(t)η−1D(t)

)⊺
q

+

(
E ′(t) + 2C(t)RS −R⊺E(t)− 2γC(t)ΣE(t) +

1

2
B(t)⊺η−1D(t)

)⊺

S

+

(
F ′(t) + S

⊺
R⊺E(t) + Tr(ΣC(t))− γ

2
E(t)⊺ΣE(t) +

1

4
D(t)⊺η−1D(t)

)
= 0.

As it is straightforward to verify that θ satisfies the terminal condition (107),
the result is proved.

Remark 2. Two remarks can be made on the system of ODEs (109):

• This system of ODEs can clearly be decomposed into three groups of
equations: the first three ODEs for A, B and C are independent of the
others and can be solved as a first step; once we know A,B, and C we
can solve the linear ODEs for D and E, and finally F can be obtained
with a simple integration;

• When R = 0 (i.e. in the case where the prices S of the d assets are
correlated arithmetic Brownian motions), there is a trivial solution to
the last five equations which is B = C = D = E = F = 0. The function
A can then be found using classical techniques (as shown in Section 11).

12.5 A matrix Riccati equation

It is noteworthy that the first system, i.e.
A′(t) = γ

2(B(t) + Id)Σ(B(t)⊺ + Id)− A(t)η−1A(t)

B′(t) = (B(t) + Id)R + 2γ(B(t) + Id)ΣC(t)− A(t)η−1B(t)

C ′(t) = R⊺C(t) + C(t)R + 2γC(t)ΣC(t)− 1
4B(t)⊺η−1B(t)

boils down to the following Matrix Riccati ODE in P =

(
A 1

2B
1
2B C

)
:

P ′(t) = Q+ Y ⊺P (t) + P (t)Y + P (t)UP (t), (111)
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where

Q =
1

2

(
γΣ R
R⊺ 0

)
∈ S2d(R), Y =

(
0 0
γΣ R

)
∈ M2d(R),

U =

(
−η−1 0
0 2γΣ

)
∈ S2d(R),

and the terminal condition writes

P (T ) =

(
−Γ 0
0 0

)
∈ S2d(R). (112)

When compared to the Matrix Riccati ODEs arising in the LQG control
literature, the distinctive aspect of our equation is that the matrix U char-
acterizing the quadratic term in the Riccati equation has both positive and
negative eigenvalues. In particular, we cannot rely on existing results (see
for instance Theorem 3.5 of Freiling (2002)) to prove that there exists a solu-
tion to (111) with terminal condition (112). However, the work in Bergault
et al. (2022) proves the existence of a solution. we recall these results in the
following section.

12.6 Simulations

Here, we show several applications of the strategy. We first use of the
optimal strategy for a trader wishing to unwind or execute a statistical arbi-
trage for a mean-reverting asset. Next, we consider a pair of two cointegrated
French stocks (pairs trading). We start with a two-asset portfolio liquida-
tion problem and compare the optimal liquidation strategy in our model with
that obtained in a multi-asset Almgren-Chriss model.26

In the Almgren-Chriss model used for carrying out comparisons, the price
dynamics is of the form dSt = VACdWt, where VAC ∈ Md,k(R), i.e. a simple
Bachelier dynamics (with correlations). This dynamics differs from that of
the OU model we use throughout this section (i.e. dSt = R(S−St)dt+V dWt)
when R ̸= 0. In particular, if prices exhibit mean reversion or a cointegrated
behavior, as is the case in our examples, the classical Almgren-Chriss model
does not properly take the true multivariate dynamics of prices into account,
with sometimes important consequences in terms of risk management.

26Throughout this section, optimal trading strategies are computed by approximating the solution of the
Riccati ODEs using implicit Euler schemes.
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12.6.1 Mean reversion

Here, we use data from the FX market, in which asset prices often exhibit
mean reversion. We consider a FX futures contract (hereafter CDU1) on the
currency pair Canadian Dollar (CAD) / US Dollar (USD) that is exchanged
on the Chicago Mercantile Exchange. The contract specifications are given
in Table 2.

Underlying asset Canadian Dollar

Quotation currency US Dollar

Contract size CAD 100000

Expiry date September 14, 2021

Table 2: CDU1 contract specifications

We plot in Figure 24 the mid-price of CDU1,27 sampled every 60 seconds
during the regular trading hours (02:00-16:00 Central Time),28 over the three
following trading days: August 11, August 12, and August 13, 2021.

02:00 08:00 14:00
Time

$79700

$79800

$79900

$80000

P
ri

ce

11/08/2021
02:00 −→ 16:00

CDU1

02:00 08:00 14:00
Time

12/08/2021
02:00 −→ 16:00

02:00 08:00 14:00
Time

13/08/2021
02:00 −→ 16:00

Figure 24: Mid-price of CDU1 sampled every 60 seconds during the regular
trading hours (02:00-16:00 CT). Top left: August 11, 2021. Top right: August
12, 2021. Bottom: August 13, 2021.

Liquidation. We consider the case of a trader wishing to unwind a long
position in 2250 contracts29 during the third day, i.e. on August 13, 2021.

27CDU1 is usually quoted in USD cents per CAD. However, to use our model, the price must take account
of the contract size and be the contract value in USD.

28Although CDU1 is quoted continuously with a 60-minute break each day beginning at 16:00 CT, we
only consider the trading hours between 02:00 and 16:00 CT because the contract is only liquid during these
hours corresponding to European and American market activity.

29This represents roughly 5% of the average daily traded volume over the period considered in this example.
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We estimate the OU parameters using prices from the two preceding trading
days: August 11 and August 12, 2021. Coefficients are classically estimated
using least squares regression.30 In order to set the value of the execution
cost / temporary market impact parameter η, we use a similar argument as in
Almgren and Chriss (2001): we suppose that the additional cost incurred per
contract when trading a given volume is proportional to the participation
rate to the market. More precisely, for each percent of participation rate
(in practice we consider a flat volume curve that matches the average daily
volume), a cost corresponding to half the bid-ask spread31 is incurred. This
results in setting η = 5 · 10−3 $ · day. For the terminal penalty parameter Γ,
we set a high value to enforce complete liquidation by the end of the trading
day. For the risk aversion parameter γ, we choose an intermediate value that
does not neutralize any of the financial effects our model could illustrate. The
resulting values used to run our algorithms are given in Table 3.32

Parameter Value

T 1 day

Q0 2250

S0 $79835

R 5.1 day−1

S $79887

σ 243.67 $ · day−
1
2

η 5 · 10−3 $ · day
Γ $100

γ 2 · 10−5 $−1

Table 3: Value of the parameters.

We plot in Figure 25 the asset price trajectory (St)t∈[0,T ] on August 13,
2021 and the inventory process (Qt)t∈[0,T ] corresponding to the use of the
optimal strategy.33 We also plot the inventory process when using a classical

30A time discretisation of an Ornstein-Uhlenbeck model gives rise to an Auto-Regressive model of order
1, or AR(1). The parameters of an AR(1) model are classically estimated by using least squares regression.
Conversion of AR(1) coefficients into their continuous-time counterparts is straightforward.

31The average bid-ask spread is close to the tick value equal to $5 per contract.
32In the one-asset case, Σ = V V ⊺ is a scalar. We classically write it as σ2 and document the value of σ.
33In what follows, this strategy is often referred to as ACOU (Almgren-Chriss under Ornstein-Uhlenbeck

dynamics) strategy.
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Almgren-Chriss (AC) strategy.34

The optimal strategy with mean reversion is different from that derived
in the Almgren-Chriss model. In particular, the liquidation process is sig-
nificantly faster in the latter case because unwinding the portfolio appears
riskier to a trader who believes that the price evolves as a Brownian rather
than a mean-reverting OU. Second, in the case of the ACOU strategy, the
trader progressively unwinds their long position over the trading day but also
takes advantage of mean reversion. When the price is below S, the trader
reduces the pace of their selling. Symmetrically, when the price is above S,
the trader sells at a faster pace.

$79800

$79900

Asset price

CDU1 S

0

1000

2000

Inventory: ACOU

0.00 0.15 0.30 0.45 0.60 0.75 0.90
Time

0

1000

2000

Inventory: AC

Figure 25: Top: CDU1 price trajectory on August 13, 2021 – (St)t∈[0,T ].
Middle: Trajectory of the inventory when using the optimal strategy corre-
sponding to the estimated Ornstein-Uhlenbeck process – (Qt)t∈[0,T ]. Bottom:
Trajectory of the inventory when using the optimal strategy corresponding to
a Brownian motion (Bachelier) model for the price (classical Almgren-Chriss
strategy).

34To compute the AC strategy, we estimate the parameter VAC of the Bachelier dynamics. This parameter
is a scalar in our one-asset case and we denote it by σAC instead of VAC. A simple estimation based on price

increments leads to σAC = 244.02 $ · day−
1
2 which slighlty differs from σ because the drift term in the OU

model captures part of the variance.

115



12.6.2 Pairs trading

Asset prices that exhibit a cointegrated behaviour can be modeled by a
multi-OU process. We use data from two French stocks within the bank-
ing sector: BNP Paribas (hereafter BNP) and Société Générale (hereafter
GLE). Figure 26 shows the mid-prices of BNP and GLE sampled every 60
seconds during the regular trading hours (09:00-17:30) over the week August
09-August 13, 2021. Clearly, the stock prices of the two companies are driven
by the same factors and should be cointegrated.
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Figure 26: Mid-prices of BNP (left axis) and GLE (right axis) sampled ev-
ery 60 seconds during the regular trading hours (09:00-17:30) over the week
August 09-August 13, 2021.

We consider the case of a trader wishing to execute a statistical arbitrage
in the pair BNP/GLE throughout August 13, 2021. The trader estimates
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the parameters of a multi-OU model using prices from the four preceding
trading days, here August 9, 10, 11, and 12, 2021. These parameters are
estimated using classical linear regression techniques.35 Referring to BNP
and GLE by respectively using the superscripts 1 and 2, the estimated values
of the parameters are given in Table 4. The estimated value of the matrix R
suggests that the space of cointegration vectors is spanned by (1,−3.46).

Parameter Estimate

R

(
0.33 3.95
−2.52 10.23

)
day−1

S
(
S
1
, S

2
)
= (e54.23,e27.45)

Σ

(
0.47 0.20
0.20 0.14

)
e2 · day−1

Table 4: Multi-OU estimated parameters for the pair (BNP, GLE).

We illustrate the use of our model in the context of pure statistical arbi-
trage. We consider a trader with no initial inventory who starts trading on
August 13, 2021 and wants to maximise the expected utility of their PnL at
the end of the day (with no final penalty). To run our algorithm we use the
parameters in Tables 4 and 5 with γ = 2 · 10−3 e−1. The results are plotted

in Figure 27: the spread process ((S1
t −S

1
)− 3.46(S2

t −S
2
))t∈[0,T ], the inven-

tory process (Qt)t∈[0,T ] when using the optimal strategy, and the associated
trajectory of the PnL, i.e. the process (Xt +Q⊺

tSt)t∈[0,T ].

35A time discretisation of a multi-OU model gives rise to a Vector Auto-Regressive model of order 1, or
VAR(1). The parameters of a VAR(1) model are classically estimated by using least squares regression.
Conversion of VAR(1) coefficients into their continuous-time multi-OU counterparts is straightforward.
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Parameter Value

T 1 day

Q0 (0, 0)

S0

(
S1
0 , S

2
0

)
= (e54.4,e27.48)

η

(
4 · 10−7 0

0 2 · 10−7

)
e · day

Γ e0× I2

γ 2 · 10−5 e−1 or 2 · 10−3 e−1

Table 5: Value of the parameters.
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Figure 27: Top: Trajectory of the spread on August 13, 2021 – ((S1
t − S

1
)−

3.46(S2
t − S

2
))t∈[0,T ]. Middle: Trajectory of the inventories when using the

optimal strategy corresponding to the estimated multi-OU process with γ =
2 · 10−3 e−1 – (Qt)t∈[0,T ]. Bottom: Trajectory of the PnL – (Xt+Q⊺

tSt)t∈[0,T ].

We clearly see that the optimal strategy is a long/short strategy. Figure 27
shows the process (−3.46Q1

t )t∈[0,T ] which appears to be in line with (Q2
t )t∈[0,T ].

This confirms that the strategy consists mainly in “buying or selling the

spread” depending on the sign of the spread process ((S1
t − S

1
)− 3.46(S2

t −
S
2
))t∈[0,T ].
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12.7 Conclusions

In this section, we have shown how to account for cross-asset co-movements
when executing trades in multiple assets. In our model, the agent has an
exponential utility and the prices have multivariate Ornstein-Uhlenbeck dy-
namics, capturing the complex cross-asset dynamics of prices better than cor-
related Brownian motions only. The advantage of our approach is twofold:
(i) it better accounts for risk at the portfolio level, and (ii) it is versatile and
can be used for basket execution and statistical arbitrage.
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13 Extensions and further readings

Some works extend the modeling framework. Forsyth et al. (2012) ex-
amine the use of quadratic variation rather than variance in the objective
function, Schied and Schoneborny (2009) use stochastic optimal control tools
to characterise and find optimal strategies for a Von Neumann–Morgenstern
investor, and Guéant (2015) provides results for optimal liquidation within a
Von Neumann-Morgenstern expected utility framework with general market
impact functions and derives subsequent results for block trade pricing.

Other works extend the assumptions on model parameters. Almgren (2003)
studies the case of random execution costs, Almgren (2009, 2012) consider
stochastic liquidity and volatility, Lehalle (2008) discusses the statistical as-
pects of the variability of estimators of the main exogenous variables such
as volumes or volatilities in the optimisation phase, Cartea and Jaimun-
gal (2016b) provide a closed-form strategy incorporating order flows from all
agents, and Cartea et al. (2018b) analyse how model misspecification of order
arrival rates, limit order fill probability, and asset price dynamics affect the
agent’s optimal trading strategy. Furthermore, Cartea et al. (2021b) propose
models that incorporate latency to improve trading performance. Finally,
Cartea et al. (2022c) and Cartea et al. (2022e,f,a) investigate algorithmic
collusion.

Several works consider other types of order and execution strategies than
those of the original Almgren-Chriss framework, which focuses on orders of
the Implementation Shortfall (IS) type with MOs only. Other execution
strategies have been studied in the literature, like Volume-Weighted Average
Price (VWAP) orders in Konishi (2002), Frei andWestray (2015), Guéant and
Royer (2014), and Cartea and Jaimungal (2016a) but also Target Close (TC)
orders and Percentage of Volume (POV) orders, in Guéant (2016). Besides,
several models focusing on optimal execution with limit orders have been
proposed, as in Bayraktar and Ludkovski (2014), but also in Guéant et al.
(2012) and Guéant and Lehalle (2015). The literature also addresses the
existence of various trading venues. The case of optimal splitting of orders
across different liquidity pools has been addressed in Laruelle et al. (2011)
and Cartea et al. (2015).

A few works in the algorithmic trading literature use model free and data-
driven approaches which better scale to complex models of the environment.
Guéant and Manziuk (2019) use a model-based deep actor-critic Reinforce-
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ment Learning (RL) algorithm to approximate the optimal market making
strategy in a high-dimensional setup, Cartea et al. (2021a) use double deep
Q network learning to derive statistical arbitrage strategies, and Ning et al.
(2021) use a model free Deep Q-Learning algorithm with LOB states as input
features to derive execution strategies, Cartea et al. (2023e) use contextual
bandit algorithm to enhance execution algorithms, Cont et al. (2022, 2023)
use data-driven models to characterise cross-impact of order flow; see also
Scalzo et al. (2021); Arroyo et al. (2022); Duran-Martin et al. (2022); Borde
et al. (2023).

A strand of the literature generalises price dynamics and incorporates sig-
nals, uncertainty, and learning in execution. Cartea and Jaimungal (2016b)
consider order flow as a driver of asset prices, Cartea et al. (2018a) study
volume imbalance as a price predictor and considers an optimal trading
framework that incorporates order book signals, and Cartea et al. (2019);
Drissi (2022) use multivariate Ornstein-Uhlenbeck (multi-OU) dynamics for
the prices. Laruelle et al. (2013) derive a strategy where the agents learns the
parameters of a jump process, Cartea et al. (2017) incorporate model uncer-
tainty in execution, and Casgrain and Jaimungal (2019) derive strategies with
learning of latent state distribution upon which prices depend. Bhudisaksang
and Cartea (2021a,b) introduce an adaptive control framework which is ro-
bust to model misspecification, where the agent continuously learns the drift,
and where her uncertainty follows a jump-diffusion. An active area where
optimal trading and market making is relevant is decentralised finance and
blockchain economics; see Drissi (2023); Cartea et al. (2023c,d,f, 2024a,b);
Capponi et al. (2025); Cartea et al. (2025b). Finally, some of the literature
explores collusion between learning agents in algorithmic trading, see Cartea
et al. (2022d,b,g, 2023b,a, 2025a), and part of the literature explores statis-
tical properties of high frequency markets, see Chang et al. (2020); Chang
(2020); Chang et al. (2021, 2025); Jericevich et al. (2021b,a).
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Bergault, P., Drissi, F., Guéant, O., 2022. Multi-asset optimal execution and
statistical arbitrage strategies under ornstein–uhlenbeck dynamics. SIAM
Journal on Financial Mathematics 13, 353–390. URL: https://doi.org/
10.1137/21M1407756, doi:10.1137/21M1407756.
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Schied, A., Schöneborn, T., Tehranchi, M., 2010. Optimal basket liquidation
for cara investors is deterministic. Applied Mathematical Finance 17, 471–
489.

Schied, A., Schoneborny, T., 2009. Risk aversion and the dynamics of optimal
liquidation strategies in illiquid. Finance and Stochastics 13. doi:10.1007/
s00780-008-0082-8.
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